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Abstract

Classroom scheduling is an important part of course scheduling at Purdue University.
The objective is to choose meeting rooms and times for each class that maximize student
and instructor preferences without creating student, room or instructor schedule con°icts.
An approach for solving classroom scheduling problems of practical size has been developed
and implemented in CHRONOS, a scheduling support system developed at Purdue and
described in this paper.

Requirements for CHRONOS derive from the course scheduling process at Purdue and
are speci¯ed in a mathematical model of the classroom scheduling problem. Database,
preprocessing, and search components provide computerized support to decision makers.
Results obtained from preliminary tests and ongoing use scheduling 500 course sections in
a set of 31 large lecture rooms are positive. Work is currently under way to implement
the system in a client-server environment and improve the qualitative aspects of generated
schedules.



1 Introduction

Scheduling is the \allocation of resources over time to perform a collection of tasks" [2].
Course scheduling is a familiar and di±cult scheduling problem where the \tasks" to be
scheduled are meetings. Resources include instructors, classrooms, and groups of students,
or classes. In the broadest sense, course scheduling includes many related problems such as
exam, conference, university, and school scheduling.

E®ective course scheduling maximizes the likelihood that students can get desired courses
while considering other goals and constraints. To date, the most successful computerized
methods have been developed for special cases such as exam scheduling and timetabling
(meeting time assignment subject to various constraints). Resource assignment (instructor,
classroom or student section assignment) subproblems have also received signi¯cant atten-
tion. While progress has been made, solving large instances is di±cult. Consequently, course
scheduling problems requiring multiple resource and meeting time selection are usually solved
by iterating between timetabling and single resource assignment subproblems.

For example, Ferland and Roy [6] and Aubin and Ferland [1] describe iterative room-
time and class-time assignment systems. Hertz [10] describes tabu search algorithms for
timetabling and student-section assignment (grouping) problems which presumably would
be applied iteratively, given instructor and room assignments. Carter documents an iterative
approach used at the University of Waterloo to develop course schedules [4]. A two phased
approach is proposed by Tripathy [15] in which courses and rooms are grouped in the ¯rst
phase and meeting times are selected in the second phase. Lagrangian relaxation is used to
solve a smaller problem obtained by grouping.

Other course scheduling strategies have relied on interactive human aid. Mulvey [13]
develops a multiple assignment scheduling approach based on the use of a general network
model. The problem is modeled as the assignment of instructor-student classes to classroom-
time slots. The approach relies on an interactive human interface designed to limit the
size of the problem encoded for solution. Dinkel, Mote and Venkataramanan [5] report
an application based on Mulvey's model involving 300 sections, 20 rooms, and 16 time
slots. Solution was accomplished using a commercial integer programming code. A similar
approach has recently been described by White and Wong [16] which allows incremental
interactive time and room assignment using heuristic solution methods. Acceptable schedules
were reported for department level use.
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Nordlund [14] solved a special case of university classroom-time assignment using an enu-
merative, branch and bound scheme based on Bean's work [3]. While the approach worked
well on some problems, di±culties ¯nding feasible solutions for moderately constrained prob-
lems were observed. These results were consistent with Bean's experience using the approach
for a di®erent class of problems.

The approach developed at Purdue and reported here addresses classroom scheduling.
Classroom scheduling is an example of single resource scheduling where classrooms and
meeting times are selected concurrently for each course section, subject to classroom and
other resource constraints. While any resource may be scheduled using the approach, class-
rooms were chosen because, with 75% average utilization at Purdue, they represent the
course scheduling bottleneck.

2 Course Scheduling at Purdue

Each fall approximately 35,000 students pursuing degrees in 40 curricula enroll in over 3,000
courses o®ered by 79 academic departments at Purdue University. These courses are taught
in roughly 8,000 sections by approximately 2,400 faculty members. Sections meet in classes
of from 1 to 500 students, typically for 3 hours of lecture per week in one of 268 classrooms.
A schedule that allows students to complete curricular requirements in a timely manner must
be developed each semester.

Course schedules are developed at Purdue using a decentralized process. Academic de-
partments schedule most of their course o®erings in classrooms allocated to them. Each
department uses its own criteria to assign instructors to sections and sections to rooms and
times. Departments that consider instructor preferences subordinate those preferences to
curriculum requirements and room capacity and other constraints.

Room allocation and interdepartmental coordination is provided by a centralized Space
Management and Academic Scheduling (SMAS) Department reporting to the Vice President
for Academic A®airs. SMAS also has responsibility for assigning individual students to
course sections following schedule development. This student scheduling approach contrasts
with the ¯rst-come-¯rst-served methods in use at many institutions. Finally, SMAS directly
schedules sections requiring 31 large lecture rooms and other sections that are di±cult for
individual departments to schedule.
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A schedule is built each semester for the following 16 week semester. Table 1 shows course
scheduling activities, when they are performed in the scheduling cycle, and the Purdue or-
ganization responsible. The ¯rst step, course demand and room requirements determina-
tion, must be completed before the semester in which the schedule is built begins. Student
scheduling is not completed until the ¯rst week in the following semester. In the interim, the
course master schedule is continually re¯ned as better course demand information becomes
available.

Table 1: Purdue Course Scheduling Process

Activity Organization When

Determine course requirements Departments Prior semester
Allocate rooms to departments SMAS Prior semester
Request large lecture rooms Departments Week 1 of semester
Schedule common (large rooms) SMAS Weeks 2 through 5
Build master course schedule Depts., SMAS Weeks 6 through 7
Pre-register students for next semester Registrar Weeks 8-15
Assign students to sections SMAS Wks. 8-16, 1st wk. next semester

SMAS allocates rooms to departments to ensure that each department has enough capac-
ity to schedule their courses while providing for satisfaction of institutional scheduling goals.
This approach has contributed to classroom use that averages 37.7 hours per week, 75% of
available hours, with a 67% station occupancy rate. Furthermore, departments must spread
schedules throughout the day and week, facilitating student scheduling and increasing the
chances for students to get requested courses. Currently 65% to 70% of students entering
Purdue will earn a 4-year degree in 6 years or less. Statistics also show that 75% of the 1986
freshmen engineering students graduated within 8 semesters.

The scheduling process at Purdue has worked well. Decentralization means that depart-
ments can respond to changes in demand, instructor availability and other factors while
coordination by SMAS provides a global perspective. Historically, the long planning cycle
resulted in preliminary schedules based on incomplete information, and the di±culty of man-
ual revision limited the number of schedule improvement iterations possible. As a result,
the process terminated with schedules that could be improved given better information and
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faster scheduling methods.

Recent process automation initiatives have addressed information and time constraints by
shortening the planning cycle and making it possible to re¯ne elements of the schedule more
quickly. Student scheduling was the ¯rst process to be automated and has resulted in signif-
icant improvements in student schedules. This capability has also resulted in improved class
schedules by allowing \what-if" questions regarding the impact of course schedule changes
on student schedules. With automated student scheduling in place, classroom scheduling
was identi¯ed as the best opportunity for improving course schedules. With computer assis-
tance, scheduling can start later, with better information, and schedules can be generated
and evaluated more quickly.
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3 The Classroom Scheduling Problem

Classroom scheduling results in feasible classroom and meeting time assignments for each
section of each course. At Purdue, good schedules are those that maximize the likelihood
that students are able to schedule selected courses. Secondary goals include maximizing
facility utilization and instructor preferences. Feasible schedules must not assign instructors
or classrooms to more than one meeting simultaneously or to times when they are unavailable.
Also, rooms may not have sections assigned which exceed their seating capacity.

Relations between sets of time patterns, classrooms, and sections are made explicit with
a nonlinear 0-1 integer programming model of the classroom scheduling problem (CSP). A
time pattern is speci¯ed by a set of days, a start time, and a total meeting time (per week)
from which the number of meetings and the length of each can be deduced. Two patterns
overlap if they have at least one day in common and one or more time blocks that overlap.
Classrooms, time patterns, and sections are identi¯ed by integer-valued indexes. Now, given
the following sets, subsets and notational conventions

R = f classrooms, r 2 Rg

T = f time patterns, t 2 T g

L = f slots, l = (r; t) 2 Lg

L = f slots with feasible classroom and time pattern for section sgs

T = f feasible time patterns for instructor igi

T = f feasible time patterns for room rgr

t(l) 2 T = the time pattern associated with slot l

r(l) 2 R = the classroom associated with slot l

S = f sections to which instructor i is assignedgi

the classroom scheduling problem is modeled as the assignment of a slot, l, to each section,
s after Mulvey [13]. That is, we wish to ¯nd optimal values for x for each section s andsl

slot, l 2 L wheres
8
< 1 if section s is assigned to slot l 2 Lsx =sl : 0 otherwise

Assuming T contains only nonoverlapping time patterns, CSP can be formulated as a
nonlinear, multiple objective integer program as follows. Let ² be the expected students s1 2
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con°icts if sections s and s meet simultaneously (i.e., the expected number of students1 2

jointly enrolled in s and s ). And, ! is the value of the instructor preference for meeting1 2 sl

section s using the time pattern of slot l. Similarly, let ± be the value of instructors l ;s l1 1 2 2

preference for a relation between section s assigned slot l and section s assigned l (e.g.,1 1 2 2

preference for back-to-back courses) where s ; s 2 S . Finally, ½ is the \room ¯t" com-1 2 i sl

puted by dividing enrollment in section s by the room capacity (stations) of room r(l) and
considering other criteria such as distance from the professor's o±ce.

Now, it is desired to

minimize Z = max (² x x ) (1)1 s s s l s l1 2 1 1 2 2
s ;l ;1 1
s 6=s ;2 1

l :t(l )=t(l )2 2 1

X X X X
maximize Z = (! + ½ )x + ± x x (2)2 sl sl sl s l ;s l s l s l1 1 2 2 1 1 2 2

s l2L s ;s 2S l ;l 6=ls 1 2 1 2 1
s 6=s2 1

(CSP) subject to:
X

x · 1 for all i; t 2 T (3)sl i
s2S ;i

l2L :t(l)=ts

X
x · 1 for all l = (r; t 2 T ) (4)sl r

s:l2Ls
X

x = 1 for all s (5)sl
l2Ls

x = 0 for all s; l62 L (6)sl s

x 2 f0; 1g for all s; l (7)sl

Equations (1) and (2) re°ect current management practice at Purdue and were developed
through a series of interviews with decision makers involved in the master scheduling process.
They are not exhaustive, but represent the most widely applied scheduling criteria. Equation
(1) indicates that a primary goal is to minimize the maximum expected common enrollment
between two sections scheduled at the same time. A minimax objective re°ects the fact
that a few con°icts in several sections (which might preclude a few students from getting all
their courses) are preferable to keeping the average (or total) con°icts small but allowing an
arbitrarily bad worst case. The minimax objective is preferred because a bad enough worst
case may prevent a®ected courses from being o®ered at all.

Equation (2) contains terms related to secondary scheduling objectives: maximizing in-
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structor time preferences, room ¯t and paired section and slot preferences such as requests
for sections to be scheduled back-to-back. The linear term equally weights instructor room
and time preferences and the quality of the room ¯t. Including a measure of how well the
number of stations in a room match the section requirement in the room ¯t may at ¯rst seem
inconsequential. If unused rooms are included when computing aggregate room utilization,
all solutions which feasibly schedule all sections will have the same utilization. However,
using capacity utilization as a secondary room selection criteria should lead to qualitatively
better schedules.

The quadratic term in (2) models second order instructor preferences. Common pref-
erences include the desire to teach courses with a one hour break, on the same day, and
back-to-back. If preferences are speci¯ed by an instructor, relations are generated for all
pairs of that instructor's sections. As implemented, coe±cient values and weights are con-
trolled by the decision maker to re°ect the relative importance of various preferences. The
value of second order preferences, ± , may also be a function of the di®erence betweens l ;s l1 1 2 2

a desired relation and that represented by the slots. For example, if back-to-back sections
are desired, the farther apart the times for the slots are, the less value the paired choices are
given.

Set-packing constraints (3) and (4) restrict room and instructor assignments to available
capacity (preclude resource con°icts). Note that (3) and (4) are valid instructor and room
con°ict constraints only if time patterns, t 2 T , do not overlap. While nonoverlapping
time patterns are assumed here for exposition, the solution approach described in the next
section relaxes this assumption. Equation (5) is a multiple-choice constraint that requires
exactly one slot (room-time) assignment for each section. Finally, equation (6) restricts room
assignments to those that meet or exceed section seating and other requirements and time
pattern choices to those that match meeting time requirements for each section.
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4 Schedule Generation

While CSP models the essential elements of the Purdue classroom scheduling problem, ef-
¯cient solution is complicated by the multiple, nonlinear objective functions and binary
decision variables. Also, while assuming nonoverlapping time patterns simpli¯es exposition,
many of the time patterns in use at Purdue do overlap. Therefore, rather than solving CSP
directly, a two-phase approach is used. This approach e±ciently solves CSP while relaxing
the nonoverlapping time pattern assumption.

The two phases of the solution approach consist of preprocessing followed by a comput-
erized search over a simple, but general model of the scheduling problem. Preprocessing
identi¯es feasible classroom and time pattern choice sets and therefore the set of candidate
slots, L , for each section. A local search algorithm is used in the second phase to ¯nd goods

schedules. The simpli¯ed model and preprocessing and search algorithms are presented in
this section. CHRONOS, a scheduling support system that implements this two-phase ap-
proach and provides data management and schedule evaluation capabilities is described in
the next section along with test results.

4.1 Search Model

CSP can be reformulated as a multiple choice quadratic vertex packing (MCQVP) problem.
MCQVP e®ectively models resource con°ict constraints with overlapping time patterns and
allows a great deal of °exibility for problem instantiation. An instance of MCQVP, in the
classroom scheduling context, is partially speci¯ed by an indexed set of paired room and
time pattern (slot) candidates, L , for each section, s. Preference information, and a list ofs

con°icting choice pairs (i.e., pairs of choices that cannot be simultaneously selected) is also
required.

The union of the slot candidate sets forms a set of indexed choices with choice j modeled
with a binary choice variable, x , where x is identi¯ed with section s(j). The jth choicej j

therefore is de¯ned by a section, room, and time pattern triplet, [s(j); r(j); t(j)]. If xj
= 1, section s(j) is assigned to slot l(j) (room r(j) and time pattern t(j)). Choice set
J = fj : s(j) = sg denotes the set of choice indexes associated with section s.s

Coe±cients c and d quantify ¯rst and second order room and time preferences. Specif-j jk

ically, c = ! + ½ where ! and ½ are instructor preference and room ¯tj s(j)l(j) s(j)l(j) s(j)l(j) s(j)l(j)
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values as de¯ned for CSP. Also, d = ± is the cost of simultaneously selectingjk s(j)l(j);s(k)l(k)

choices j and k (for s(j)6= s(k) ).

X XX
maximize Z = c x ¡ d x x (8)j j jk j k

j j k

(MCQVP) subject to:
X

x = 1 for all s (9)j
j2Js

x + x · 1 for all con°icting choices (10)j k

j and k; j6= k

x 2 f0; 1g (11)j

Equation (8) represents the desire to maximize both ¯rst and second order assignment
preferences for room and time assignments and can be obtained directly from (2). In a sense,
the d coe±cients price \soft" con°icts. Soft con°icts occur when second order preferencesjk

such as scheduling two sections back-to-back are not honored and contrast with \hard"
con°icts. Hard con°icts are precluded from feasible schedules by constraints of the form of
equation (10). Hard con°icts arise when two sections are scheduled for the same room or
instructor, or have too many common students. While no hard con°icts are allowed in a
feasible schedule, soft con°icts are allowed but minimized by pricing.

The remainder of CSP is mapped to MCQVP as follows. Equation (6) is handled by re-
stricting room and time pattern choices during preprocessing, based on section requirements.
Equations (3) and (4) are reformulated as vertex packing constraints in (10) (a constraint
for each section-slot choice pair) to allow overlapping time patterns. Objective (1) is also
decomposed into vertex packing constraints in (10) using a threshold for ² to ¯lter impor-s s1 2

tant student-based con°icts or speci¯ed con°ict sets. The MCQVP model therefore maps
directly to equations (2), (5), and (7), with (1), (3) and (4) reformulated as vertex packing
constraints.

There are two major advantages to the MCQVP formulation. First, MCQVP is a more
general model than CSP. Virtually any relation between sets or, equivalently, pairs of sec-
tions can be accomodated. Such relations are extremely important in classroom and other
resource scheduling problems. Incorporating new relations requires relatively minor changes
to preprocessing and other support software while leaving the search code unchanged. In
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addition, our research has shown that e±cient local search methods work remarkably well
with MCQVP [12].

4.2 Preprocessing

Preprocessing algorithms identify time pattern and classroom candidates, combine them to
create choices for each section, and generate MCQVP constraints for the search. Choices
are identi¯ed for section s by ¯ltering time pattern and room lists for feasible candidates
and applying further restrictions to these candidates to yield T and R . T and R are thens s s s

combined to yield the section-slot choices, L , for each section, s, and explicitly guarantees

satisfaction of equation (6). Choice preference values, c , are obtained by adding roomj

and time pattern preferences, normalized between 0 and 100. While CHRONOS allows
di®erential weighting of room and time pattern preferences, our work to date indicates that,
while some decision makers may not include one or both, if included, they tend to treat them
the same.

Candidate time patterns are selected by matching section time pattern requirements
with a list of patterns maintained in the CHRONOS database. Candidate patterns must
also satisfy explicit constraints on the times that sections can be taught and instructors are
available. Time pattern preference values (later combined with room preference values for
a choice) are based on designated day and time block ranges obtained from each instructor.
For a given time pattern and section, the preference value is obtained by assigning a weight of
1 2to day matches and to time block overlaps. Time block values are reduced exponentially3 3

as the amount of overlap between instructor preferences and the time pattern decreases.

Room candidate selection begins, like time pattern selection, by constructing a list of
feasible room candidates for each section based on size and other requirements. A ¯tness
(preference) metric is also computed for each candidate. Room preference values are cur-
rently computed by weighting location (relative to the instructor's building) 20% and the
room fraction of the seats utilized 80%. The initial room candidate list may be pared to a
user-speci¯ed maximum size by applying a load balancing heuristic.

The load balancing heuristic begins by initializing each room with a pseudo \capacity"
of 3 to 4 times its available hours, depending on the maximum number of room candidates
per section speci¯ed by the user. We have found that 3 to 5 room candidates per section
provides enough °exibility for the search algorithms. Room candidates are then selected for
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each section, starting with the section with the fewest feasible rooms. Candidates with high
¯tness values are chosen ¯rst with ties going to rooms with the most remaining \capacity".
As candidates are chosen, their remaining \capacity" is reduced by the hours required by
the section. This heuristic spreads room candidates evenly among the sections, reduces the
size of the search space and, by favoring rooms with high ¯tness values, improves the quality
of solutions explored during the search. It is particularly advantageous where there are
relatively large sets of identical rooms to schedule.

4.3 Local Search

The dynamic biased sampling with strategic oscillation (DBSO) algorithm is an enhanced lo-
cal search algorithm developed for solving instances of MCQVP. DBSO is based on principles
exploited by simulated annealing [11] and tabu search [7, 8, 10] algorithms. These algorithms
incorporate strategies that balance diversi¯cation into new regions of the solution space with
intensi¯cation around good local optima. The goal is to retain the simplicity and e±ciency
of local search while avoiding being trapped at local optima. DBSO uses dynamic biased
sampling and strategic oscillation mechanisms to achieve this goal.

0The DBSO search begins with an initial solution, x . Moves then transform an existing
solution into a new one in the current neighborhood at each step. Formally, a move, m, is a

i¡1 ifunction that maps a trial solution at iteration i¡ 1, x , to a new solution, x , at iteration
i,

i¡1 im : x 7! x

i i¡1where x is a solution at the end of iteration i in the neighborhood of x .

The search neighborhood used to solve MCQVP includes solutions that violate constraints
in (10). Equation (9) feasibility is maintained, however. Notice that an initial solution
satisfying (9) can be easily found by arbitrarily choosing exactly one assignment per section.
And, given such an initial solution, any pairwise interchange (exchange) move resulting in a
new choice for a single section is admissible for this neighborhood.

Formally, each DBSO move complements a pair of choices that correspond to alternative
assignments for a single section, s. For example, assume that x is the solution variable fork

0section s, (x = 1) at the beginning of the move and x is the variable selected to replace xk k k

0as the choice for section s. At the beginning of the swap, x = 0 since one and only one ofk

0the choices for each section can be in the solution at a time. Of course, x = 0 and x = 1k k
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when the exchange is complete.

A two-step process is used to choose a swap at each iteration. Selection begins by
sampling about 30 percent of the sections for exchange consideration. The best exchange
available within the section sample is then chosen based on changes in the objective function
(equation (8)) and con°ict feasibility (equation (10)). The relative importance of improving
the objective function versus removing con°icts is varied during the search by strategic
oscillation of the con°ict penalty.

4.3.1 Dynamic Biased Sampling

Sections are sampled for move evaluation using dynamic biased sampling (DBS). This ap-
proach is responsible for strategic diversi¯cation in a relatively small region about a local
optimum. Sections that have not been selected recently for evaluation and have had few
exchanges made are assigned a high priority for sampling. By biasing sampling in favor of
sections with high priority the search is forced to look at a variety of solutions. Thus, dy-
namic biased sampling may be viewed as an alternative method for implementing concurrent
frequency and recency based tabu search as well as a type of candidate list strategy [9].

However, since sections are sampled randomly, every section has a non-zero (if small)
probability of being chosen for evaluation, giving DBS other desirable properties. To the
extent that low priority sections may be occasionally selected, DBS provides a mechanism to
override low priority sections' \fuzzy" tabu status as well. When the best move corresponds
to a section with a low priority, it will be taken. Sampling therefore provides an intensi¯cation
mechanism similar to the Glover's aspiration criteria [10]. DBS therefore implements many
of the advanced tabu search approaches automatically, with sampling parameters providing
a simple control mechanism.

4.3.2 Strategic Oscillation

Penalty weight oscillation drives the search toward feasible solutions when the penalty is
high and causes it to ignore feasibility entirely when the penalty reaches zero. The net
e®ect is to diversify the search as it approaches a local optimum by reducing the con°ict
constraint (10) penalty. Hence, as the penalty is reduced, the search moves away from the
local optimum into a \good" (i.e. high value, but infeasible) region of the search space. The
cycle is completed as the solution is again driven feasible by high penalty values and the
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objective function decreases.

Figure 1 illustrates the oscillation with a search trajectory for a single problem instance.
The graph shows a shaded region delineated by two solid lines, with a point plotted for the
solution at each iteration. The upper line plots the objective function (Z) value and the
lower line plots this value minus the hard con°icts. Therefore, the shaded region represents
the degree of equation (10) infeasibility at each iteration and feasible solutions are easily
identi¯ed when the two curves come together and the shaded region disappears.

Figure 1: Search Algorithm Trajectory

The dotted curve on the graph in Figure 1 shows how the infeasibility penalty oscillates
over time. The search ¯rst approaches a local optimum around iteration 200 and the search
begins to diversify. Solutions are then found in a new (infeasible) region. The ¯rst cycle
ends around iteration 600 with a new feasible solution found as the the penalty is increased.
The cycle is repeated as the penalty oscillates between its minimum and maximum.
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5 CHRONOS Implementation

The solution approach described in the previous section has been implemented in
CHRONOS, a prototype system to support course scheduling at Purdue. CHRONOS pro-
vides computerized data management, \what-if" modeling, and search capabilities to support
the decentralized scheduling process used at Purdue. The system is computationally e±cient
and easily modi¯ed to to incorporate new preferences and constraints and was designed to
be linked with existing and planned information systems. The underlying search algorithm
has been extensively tested on randomly generated and representative Purdue problems.
CHRONOS is currently deployed for use in scheduling approximately 500 sections in 31
large lecture rooms at Purdue and is being enhanced for use by individual departments in a
campus-wide client-server scheduling system.

5.1 Data Input

Schedules produced using CHRONOS are in°uenced by the user through the type and quality
of data provided and the values of various parameters controlling preprocessing and search.
Data required by CHRONOS describes sections to be taught, expected student demand
for courses, instructors, rooms, and available times. These data are stored and maintained
in a relational database and converted during preprocessing to the MCQVP model format
for schedule evaluation and optimization. Parameters include cuto® values for generating
student-based con°ict constraints (section pairs may be explicitly speci¯ed as an option) and
starting point, duration, and other search control values.

Classroom, time pattern, and instructor tables provide the basic data for scheduling with
CHRONOS. Rooms are speci¯ed by location, size, type, and availability. Acceptable time
patterns are de¯ned by the days and the time block when meetings will be held. At Purdue,
most time patterns are de¯ned for either Tuesday, Thursday or Monday, Wednesday, Friday
day sets. Instructor data include availability, location, and ¯rst and second order meeting
time preferences. First order preferences specify which days and time are most desirable.
Second order preferences indicate whether the instructor wishes to teach courses on the same
days, back-to-back, with a one hour separation between them, and so on.

Section descriptors include the maximum size (number of students) and the instructor
assigned, if known, as well as room and meeting time requirements. Room requirements
such as room type, size and teaching facilities are speci¯ed for each section. The number
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of times a section meets (days per week) and the total meeting time specify time pattern
requirements. Times when sections are restricted from being taught due to course demand
patterns or for other pedagogical reasons may also be designated. Room and/or time pattern
assignments may optionally be speci¯ed as an initial solution for the search or ¯xed.

Schedule con°icts arise if two sections are taught at times that overlap and have the
same instructor or room assigned or a signi¯cant number of students in common. Students
are assigned to sections outside the CHRONOS system following classroom-section (master)
scheduling. When two courses that a student wants are scheduled at the same time, he or
she will not be able to take one. Thus, master scheduling must consider expected demand for
all pairs of courses to ensure that the chance of blocking students from courses is minimized.
CHRONOS accepts estimates of joint demand in several forms, but the result is always a
list of pairs of sections that must have all meetings scheduled at di®erent times to satisfy
student demand. The maximum number of expected student con°icts can be minimized by
eliminating pairs from the list, beginning with those with relatively minor student con°icts
until a schedule with no \soft" student con°icts is found.

5.2 Application Tests

CHRONOS was originally tested using six Purdue scheduling problems. Test problem char-
acteristics and setup times (in minutes) are shown in Table 2. Problems R1 to R4 represent
single departments, using their prede¯ned room sets. R1, R2, and R3 are engineering de-
partments with relatively low service loads whereas R4 is a large department with many
nonmajor students. Problem R5 represents the core courses of a remote campus and R6 is
an instance of the large lecture room scheduling problem currently handled by SMAS.

The number of rooms shown for each problem is the total and does not re°ect availability.
Many rooms were only available for scheduling part of the time, particularly for problems
R1-R3. Con°ict density is the percentage of choice pairs corresponding to the same room,
instructor, or class and is therefore a measure of how heavily a problem is constrained.

Setup times are given for translating database information into numerical model coe±-
cients and for initializing the search. These times can be signi¯cant as they are a function
of the product of the number of sections (N ) and the number of choices (N ). An analysiss x

of the data using a linear regression model yielded:

¡6Model setup time = 6:3 + 8:2£ 10 N Ns x
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and
¡6Search setup time = ¡1:3 + 22:3 £ 10 N Ns x

2with R values over 0.99. Search time per iteration is a linear function of the total number
of choices, N .x

Table 2: Test Problem Characteristics

Sec- Con°ict Z Setup Time
Problem tions Rooms Choices Density Bound Model Search

R1 67 29 731 .0114 395.9 3.8 1.0
R2 196 39 5,707 .0054 682.3 16.5 23.8
R3 162 31 5,348 .0056 567.7 14.4 18.5
R4 362 41 25,166 .0048 2044.5 83.4 200.0
R5 137 47 5,784 .0047 464.5 15.5 17.0
R6 492 31 17,313 .0024 4006.9 73.2 190.0

In general, the objective function coe±cients corresponding to ¯rst order preferences (the
linear term in equation (8)) re°ected room and time pattern \¯t" with the class size and
instructor preferences respectively and ranged between 0 and 10. The range for problems R2,
R3, and R5 was 0 to 5 because time preferences were not speci¯ed. Second order preferences
(soft con°icts) corresponding to the quadratic term in equation (8) were very small for all
problems.

5.3 Test Results

Results obtained for each problem are shown in Table 3. Four runs, made with three random
starting points and one \given" starting point obtained from the previous year's schedule
are summarized for each problem. All runs were made on an IBM RISC 6000 model 520
with the C source code compiled using the \cc" compiler without optimization. Parameter
values were calibrated prior to these runs using a small set of randomly generated synthetic
problems. Likewise, the maximum search time was determined empirically by ¯nding times
beyond which no further improvement was likely for synthetic problems of various sizes.
While it is possible that better solutions would be found with longer runs, the closeness of
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the average solutions to bounds suggests that the point of diminishing returns was reached
in most runs.

Bounds were obtained by summing the maximum linear (preference) objective function
coe±cients for each section. The choice set for each section was selected during preprocessing
by eliminating infeasible and low preference value choices. Hence, while the bounds are for
restricted problems, they often bound the original problems as well. The number of runs
(out of 4) for which feasible (no con°ict) solutions were found is also shown in Table 3,
with statistics on the minimum number of unresolved con°icts for each problem. Finally,
statistics on the best solution value (Z-Best) and the time to ¯nd it (T-Best) obtained for
all starting points (runs), are presented for each problem.

Table 3: Search Results

Srch No. Minimum Hard T-Best
Time Z Feas. Con°icts Z-Best Z-Best/ (minutes)

Prob (Min) Bound Runs Avg Sdv Avg. Sdv Z-bound Avg. Sdv

R1 1.0 395.9 4 0.0 0.0 388.9 0.0 .982 0.20 0.08
R2 7.0 682.3 3 0.2 0.5 676.5 1.3 .991 3.27 2.43

R3 5.0 567.7 4 0.0 0.0 560.0 0.8 .986 2.31 2.18
R4 30.0 2044.5 2 1.5 1.7 1967.0 3.9 .962 7.94 0.24

R5 5.0 464.5 4 0.0 0.0 464.0 0.1 .999 1.84 0.94
R6 35.0 4006.9 2 0.5 0.6 3944.4 7.0 .984 5.99 1.70

As shown in Table 3, cases R1, R3, and R5 proved easy for the DBSO algorithm. Feasible
solutions were obtained from all starting points with objective function values approaching
the upper bound. The other three problems, R2, R4, and R6, were more di±cult. The
algorithm found feasible solutions from better than 50 percent of the starting points and
averaged relatively few con°icts when feasible solutions were not found. The best objective
function values were always very close to the linear bound.

5.4 Large Lecture Rooms Experience

The results in Table 3 and equally promising results from the large computational experi-
ment reported in [12], convinced Purdue's Department of Space Management and Academic
Scheduling (SMAS) to use the system to schedule large lecture rooms while developing client-
server applications for individual departments. For the past several semesters CHRONOS
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has either provided the large lecture rooms schedule or been run in parallel with manual
techniques to assess its e®ectiveness. Additional lessons have been learned and ehancements
made as a result of operating in a production mode.

CHRONOS has performed well by quantitative measures such as the number of con°icts
and the objective function value for resulting schedules. As often happens in application,
however, a number of more subtle details created di±culites. Some di±culties were addressed
with minor modi¯cations to the system. Approaches are being developed for others.

Minor revisions included changes to:

² Incorporate distance into room selection

² Allow selection of rooms with projectors

² Select the same room for back-to-back sections

Distance and projector requirements were accommodated by changing the room candidate
selection preprocessing logic. Initial runs allowed too many options, sometimes requiring pro-
fessors and students to travel unacceptably long distances. The revised system considers the
location of candidate classrooms relative to the professor's o±ce much more carefully. Simi-
larly, some classes require projectors for e®ective teaching. The initial version of CHRONOS
had no way to take this into consideration. Revisions to the classroom database and prepro-
cessor now identify those rooms having projectors and allow choices to be limited to them.
Additional criteria can be easily added as the need is identi¯ed.

Professors teaching large lecture classes often request that classes be scheduled \back-
to-back", or in successive time blocks on the same days. Initial CHRONOS data coding
implemented back-to-back only in terms of times, leaving open the possibility that a professor
might teach courses in adjacent time blocks but in rooms far apart. Only a minor change to
the preprocessor was required to de¯ne choice pairs as back-to-back only if they have both
the same room and adjacent times. Other relations can be easily added as well, should they
be needed.

More serious challenges are a result of the system's optimization paradigm. Sometimes
the quest for optimal solutions produces unintended side e®ects. Di±culties with CHRONOS
fall in two main categories:

² Preferences and fairness
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² Robustness.

While neither precludes use of CHRONOS, in di®erent ways each has the potential to prevent
realization of its full potential.

Preference and fairness issues arise primarily from variation in detail supplied by depart-
ments requesting classes in large lecture rooms. Some express very precise preferences for
rooms and times; others give only vague speci¯cations. CHRONOS maximizes expressed
preferences. As a result SMAS sta® have found schedules biased against those with impre-
cise requests. In one sense such departments are the \good citizens", willing to be °exible
about rooms and times. But, optimized schedules tend to punish them with poor times and
locations to accommodate more explicit requirements of others. Attempts to standardize
departmental input show promise in this area.

Anecdotal evidence suggests that brittleness, or a lack of robustness, often a characterizes
optimization-based schedules, and CHRONOS schedules often exhibit this property. Robust
schedules are important because SMAS produces its large lecture room schedule relatively
early in the semester, but numerous changes occur as registration proceeds. Each change
requires rearrangement of the schedule, and it is preferable that this be done with a minimum
number of assignments changed. Previous manual schedules, which were not so tightly
optimized, left slack in the schedule, making incremental changes relatively easy to arrange.
In contrast, SMAS schedulers ¯nd that changing CHRONOS schedules often leads to a
long cascade of revisions to other class assignments. Current work to address this problem
includes building strategic \holes" into the schedule to facilitate last minute changes.

6 Conclusions

Many of those doing class scheduling at Purdue are nearing retirement, and schedulers who
follow them will lack much of their historical perspective and rapport with the faculty.
Experience with CHRONOS has shown that a scheduling support system to aid more junior
and less experienced sta® is well within the capability of modern optimization-based software.
Placing CHRONOS in the hands of less sophisticated users in a client-server environment is
the ultimate goal at Purdue and work is proceeding toward full implementation. The user
interface requires far more polishing, and perceived di±culties with fairness and robustness
have yet to be completely addressed, at least in the context of the large lecture room problem.
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These concerns are not insurmountable, but they are as important to ultimate success as
further development of CHRONOS's underlying mathematical structure.
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