Charles University in Prague
Faculty of Mathematics and Physics

Constraint-based Timetabling
Summary of Ph.D. Thesis

Prague, 2005 Tomas Muller

Univerzita Karlova v Praze
Matematicko-fyzikalni fakulta

Rozvrhovani s omezujicimi podminkami

Autoreferat doktorandské disetita prace
k ziskani akademickoedeckeho titulu doktor.

Obor I-1: Teoreticka informatika

Praha, 2005 Tomas Miller

Diserta&ni prace byla vypracovana v ramci doktorandskéndiat které uchaze
absolvoval na kated teoretické informatiky Univerzity Karlovy v lete@001-2005.

Uchaze: RNDr. Ing. Tomas Miller

Skolitel: Doc. RNDr. Roman Bartak, Ph.D.
Katedra teoretické informatiky MFF UK,
Malostranské nassti 2/25, 118 00 Praha 1

Skolici pracovisé: Katedra teoretické informatiky MFF UK,
Malostranské nasti 2/25, 118 00 Praha 1

Oponenti:

Prof. Gilles Pesant

Centre de recherche sur les transports, Univedsitdontréal
C.P. 6128, succ. Centre-ville

H3C 3J7 Montreal, Canada

Prof. RNDr. Peter Vojtas, DrSc.
Katedra softwarového inZenyrstvi MFF UK
Malostranské nam. 25, 118 00 Praha 1

Autoreferat byl rozeslan dne:

Obhajoba se kona dne V... od. hged komisi pro obhajoby diseétsich
praci oboru I-1 na MFF UK, Ke Karlovu 3, Praha 2nistnostic. 105

S doktorandskou disettai praci je mozno se seznamit na studijnim étd pro
doktorskeé studium MFF UK, Ke Karlovu 3, 120 00 Rr&h

Prof. RNDr. Petr Spanek, DrSc.

predseda komise pro obhajoby

disert&nich praci v oboru teoretické informatika

Katedra teoretické informatiky a matematické logiFF UK
Malostranské nam. 25, 118 00 Praha 1

1. Introduction

Constraint programming is a natural tool for ddsiog as well as solving a lot
of problems from various areas. Its major advantegets capability of precise
declarative description of a problem using relagitetween variables. It is based on a
strong theoretical basis and it has wide practiggilications in areas of evaluation,
modelling, and optimisation.

Timetabling is one of the typical examples of comst programming
application. The task is to allocate activitiestime and space respecting various
constraints and to satisfy as nearly as possilsletaf desirable objectives. A typical
constraint is the request that activities whichumimg the same resource (e.g., a room, a
machine, an operator, ...) can not overlap in timehat a resource is of a certain
capacity, restricting e.g. how many activities cee it at the same time. In addition,
there are usually relations between activities emrstraints restricting what resources
an activity should or can use.

There are a lot of timetabling problems from vasi@ueas, for example, there is
course, examination, transport, workforce, spanietabling etc. In this thesis we will
concentrate on course timetabling.

There are two major objectives of this Ph.D. the®¥i&® would like to find,
describe and experimentally verify a constrainteloiaglgorithm which is applicable to
course timetabling problems as well as to othestaimt satisfaction and optimisation
problems. Moreover, with such an algorithm, we wiolikte to tackle a real-life large
scale timetabling problem. The whole Ph.D. work wastivated by this possibility to
create an algorithm which is able to solve a giveal-life problem and which can
produce a solution fully acceptable by the users.

2. Overview

Many real-life industrial and engineering problegan be modelled as finite
constraint satisfaction problems (CSP) [Tsa93]. 8PCconsists of a set of variables
associated with finite domains and a set of comtfaestricting the values that the
variables can simultaneously take. In a complekatism of a CSP, a value is assigned
to every variable from the variable’s domain, irclsta way that every constraint is
satisfied.

Most algorithms for solving CSPs search systemiftidhrough the possible
assignments of values to variables. Such algoritaregguaranteed to find a solution, if
one exists, or to prove that the problem has natisol. They start from an empty
solution (no variable is assigned) that is extertd@ards a complete solution satisfying
all the constraints in the problem. Backtrackinguws when a dead-end is reached. The
biggest problem of such backtrack-based algoritisrthat they typically make early
mistakes in the search, i.e., a wrong early assigniroan cause a whole subtree to be
explored with no success. There are several waysfoving standard chronological
backtracking. Look-back enhancements exploit inftton about the search which has
already been performed, e.g., backmarking or bagiing [DFO2]. Look-ahead

enhancements exploit information about the remgingearch space via filtering
techniques (e.g., via maintaining arc consistenegcdbed in [BR97, BRO1]) or
variable and value ordering heuristics [MFOO]. Té& group of enhancements is trying
to refine the search tree during the search prpeesgs dynamic backtracking [Gin93].

Local search algorithms [MFOO] (e.g., min-confligdJP92] or tabu search
[GH97]) perform an incomplete exploration of theasd space by repairing an
infeasible complete assignment. Unlike systema#iarch algorithms, local search
algorithms move from one complete (but infeasilalegignment to another, typically in
a non-deterministic manner, guided by heuristicgdneral, local search algorithms are
incomplete, they do not guarantee finding a cormeplstlution satisfying all the
constraints. However, these algorithms may be farenefficient (wrt. response time)
than systematic ones in finding a solution. Foiirofgation problems, they can reach a
far better quality in a given time frame.

There are several other approaches which try tobowmocal search methods
together with backtracking based algorithms. F@neple, the decision repair algorithm
presented in [JLO2] repeatedly extends a set ajrasents (called decisions) satisfying
all the constraints, like in backtrack-based alfpons. It performs a local search to
repair these assignments when a dead-end is redckedthese decisions become
inconsistent). After these decisions are repaitth@, construction of the solution
continues to the next dead-end. A similar appraaatsed in the algorithm presented in
[Sch97] as well.

2.1. Constraint Satisfaction Problem

A constraint satisfaction problem (CSP) is a triple (V,D,C), where

« V={vy,Vvy...,V} is afinite set of variables,

« D ={D3,D,,...,Dy} is a set of domains (i.e.,i[>s a set of possible values for
the variable y,

« C ={c1,c,...,Cn} is a finite set of constraints restricting thelues that the
variables can simultaneously take.

« A solution to the constraint satisfaction probl@ms a complete assignment
of the variables from V that satisfies all the doaisits.

For many constraint satisfaction problems it isdhar even impossible to find a

solution in the above sense. For example, for cwestrained problems [FW92], there
does not exist any complete assignment satisfyinthe constraints. Therefore other
definitions of problem solution like Partial Cormtit Satisfaction were introduced

[FW92]. In paper [BMRO04], we proposed a new viewtlté problem solution based on
a new notion of maximal consistent assignment. &pjgroach is strongly motivated by
the university timetabling problem but we believattit is generally applicable. The

basic idea behind is to assign as many variablgossible while still keeping the rest
of the problem “consistent”. It means that the usewy later relax some constraints in
the problem (typically some of the constraints aghtimee non-assigned variables that
cause conflicts) so that after this change thegass&nt can be extended to other
variables.

Formally, let® be a CSP and be a consistency technique (for example arc
consistency). We say that the constraint satisfacfiroblem is consistent if the
consistency technique deduces no conflict (e.g.,afc consistency, the conflict is

indicated by emptying some domain). We deri¢®) the result of the consistency test
which could be either true, if the proble®nis { consistent, or false otherwise. I@te

a CSP ana be a (partial) assignment of variables, then weote©o application of
the assignmerd to the problen®, i.e., the domains of the variablesarare reduced to
a singleton value defined by the assignment. Bipale say that a partial assignment
is consistent with respect to some consistencynigae ¢ iff {(©0). Note that a
complete consistent assignment is a solution of pmeblem. Note also that
backtracking-based solving techniques typicallyeagta partial consistent assignment
towards a complete (consistent) assignment.

As we already mentioned, for some problems thees amt exist any complete
consistent assignment; these problems are calledaonstrained. In such a case, we
propose to look for the maximal consistent assigitm&/e say that the consistent
assignment is maximal for a given CSP if theredigonsistent assignment with a larger
number of assigned variables. We can also defineaker version, so called locally
maximal consistent assignment. Locally maximal iaat assignment is a consistent
assignment that cannot be extended to anotherble(E. Notice the difference
between the above two notions. The maximal congistesignment is defined using the
cardinality of the assignment (the number of assigmariables) so it has a global
meaning while the locally maximal consistent assignt is defined using a subset
relation, i.e., it is not possible to assign an itoldal variable without getting
inconsistency. It is pretty easy (fast) to extengt aonsistent assignment to a locally
maximal consistent assignment. In fact, every Wdrawicthe search tree defines such a
locally maximal consistent assignment. Visibly, tin@ximal consistent assignment is
the largest (using cardinality) locally maximal s@tent assignment.

2.2. Minimal Perturbation Problem

Most existing solvers are designed for static motd. These problems can be
expressed, solved by appropriate means, and thessohpplied without any change to
the problem statement. Many real-life problems d8® VJO03, SWO00, lan04],
however, are subject to change. Additional inpgumrements produce a new problem
derived from the original problem. The dynamics sofch a problem may require
changes during the solution process, or even aftlution is generated. In many real
situations, it is necessary to alter the solutioocess so that the dynamic aspects of the
problem definition are taken into account.

Problem changes may result from changes to envieotah variables, such as
broken machines, delayed flights, or other unexqubetvents. Users may also specify
new properties based on the solution found soThe goal is to find an improved
solution for the user. Naturally, the problem s$wdv process should continue as
smoothly as possible after any change in the prollemulation. In particular, the
solution of the altered problem should not diffgm#icantly from the solution found
for the original problem.

There are several reasons to keep a new solutiasioas as possible to the
existing solution. If the solution has already beeiblished, such as the assignment of
gates to flights, frequent changes would confussseragers. Moreover, changes to a
published solution may necessitate other changegidlly satisfied wishes of users are
violated. This may create an avalanche reaction.

Dynamic problems appear frequently in real-life npimg and scheduling
applications where the task is to “minimally redgofe schedules in response to a

-3-

changing environment” [SW00]. Dynamic changes i® ttontext of timetabling
problems have started to be studied at [EGJ03)etsof interactive timetabling which
needs to handle dynamic aspects of the problem disceissed in [CDJD04, PMMO04,
MBO02]. A survey of existing approaches to dynamahexuling can be found in
[Koc02]. In an annotated bibliography on dynamimstoaint solving [VJO3], it is
notable that only four papers were devoted to thelpm of minimal changes.

In paper [BMRO4], we presented a new formal modéltlee minimal
perturbation problem that is applicable to overstmained problems as well as to
problems where finding a complete solution is h&tdcall that the idea of MPP is to
define a solution of the altered problem in suchay that this solution is as close as
possible to the (partial) solution of the origipabblem.

We define a minimal perturbation problem (MPP) as gaadruple
n=@©, e, F, a), where:

+ 0O, © are two CSPs called anitial problemand achanged problem

- Fis a mapping of the variables frdnto © (see below for details), and

« o is a (locally) maximal consistent assignment f®r called initial
assignment

The function F defines how the probléns changed in terms of variables. It is
(almost) one-to-one mapping of the variables f@no the variables from®’. For some
variables v fron®, the function F might not be defined which medrat the variable v
is removed from the problem. However, if the fuaotF is definedthen it is unique (it
is a one-to-one mapping), i.e., #w & 'F(v) & 'F(u)) = F(v)}#F(u). Also, for some
variables v’ from®’, the origin might not be defined (i.e., therenis variable v such
that F(v) = v’), which means that the variable s’added to the problem. Notice also
that the constraints and domains can be changéaaith when going fromo to ©'.
We do not need to capture such changes using tppingafunctions like F because we
are concerned primarily about the variable assigrise

Let o be a (partial) assignment f@randy be a (partial) assignment f&. Then
we define Wi(o,y) as a set of variables v fro® such that the assignment of vans
different from F(v) iny, i.e., Wh(o,y) = {vUO | v/do & F(v)/h’'Oy & h#h’}2. We call
Wn(o)y) a distance set foo andy in N and the elements of the set are called
perturbations.

A solution to the minimal perturbation probldr= (©, @, F, a) is a (locally)
maximal consistent assignmghfor ©’ such that the size of the distance set(Wp) is
minimal. The idea behind the solution of MPP is aept — the task is to find the best
possible assignment of the variables for the nesblpm in such a way that it differs
minimally from the existing variable assignmenttwoé initial problem.

Let us summarize now the two criteria used whervisgl MPP: the first
criterion is maximizing the number of assigned ahleés, the second criterion is
minimizing the number of perturbations betweenrdsiltant solution and the previous
(initial) solution. These criteria are combined itmgraphically to get an objective
function.

1 Denoted !F(v), meaning F is defined for variable v
2 For simplicity reasons we writé]© which actually meang1V, where® = (V,D,C).

-4 -

3. Timetabling

A timetable shows when particular events are to take placedoks not
necessarily imply an allocation of resources. Tausublished bus or train timetable
shows when journeys are to be made on a particolde or routes. It does not tell us
which vehicles or drivers are to be assigned taiqudar journeys. The allocation of
vehicles and drivers is part of the scheduling essc Although timetabling is strictly
the design of the pattern of journeys, this patteay be devised as part of a process
which bears in mind whether it is likely that arfi@ént schedule may be fitted to the
resulting journey pattern.

A.Wren defines timetabling [Wren96] as follows:

Timetabling is the allocation, subject to consttajnof given resources to
objects being placed in space-time, in such a wsayoasatisfy as nearly as possible a
set of desirable objectives.

Timetabling has long been known to belong to tles<lof problems called NP-
complete [CK96], i.e., no method of solving it imeasonable (polynomial) amount of
time is known.

3.1. Purdue Timetabling Problem

Our work is motivated by the class timetabling peob at Purdue University
[RMO03, MRO04]. Here a timetable for large lecturasdes is constructed by a central
scheduling office in order to balance the requinetmeof many departments offering
large classes that serve students from acrossriversity. Smaller classes, usually
focused on students in a single discipline, aret#iled by “schedule deputies” in the
individual departments. Such a complex timetablprgcess, including subsequent
student registration, takes a rather long timetialrtimetables are generated about half
a year before the semester starts. The importahceeating a solver for a dynamic
problem increases with the length of this time @erand the need to incorporate
various changes that arise.

As for Fall 2004 semester, this problem consistalwiut 830 classes (forming
almost 1800 meetings) having a high density ofradgon that must fit within 50
lecture rooms with capacities up to 474 student®nRavailability is a major constraint
for Purdue. Overall utilization of the time availalin rooms exceeds 78%; moreover, it
is around 94% for the four largest rooms. AboutO00, course requests by almost
30,000 students must also be considered. 8.4%ast @airs have at least one student
enrolment in common.

The timetable maps classes (students, instructorgneeting locations and
times. A major objective in developing an autordaggstem is to minimize the number
of potential student course conflicts which occurimg this process. This requirement
substantially influences the automated timetablaeggion process since there are
many specific course requirements in most prograinssudy offered by the University.

To minimize potential time conflicts, Purdue hastdiically subscribed to a set
of standard meeting patterns. With few exceptidnbpurx 3 day per week classes
meet on Monday, Wednesday, and Friday at the loalf (v:30, 8:30, 9:30, ...). 1.5 hour
x 2 day per week classes meet on Tuesday and Thyulsdiag set time blocks. 2 or 3
hoursx 1day per week classes must also fit within spedifocks, etc. Generally, all
meetings of a class should be taught in the sansitm. Such meeting patterns are of

-5-

interest to the problem solution as they allow &ashanges between classes having the
same or similar meeting patterns.

Another aspect of the timetabling problem that nioestonsidered is the need to
perform student sectioning. Most of the classdbeénarge lecture problem (about 75%)
correspond to single-section courses. Here we aaaet information about all students
who wish to attend a specific class. The remairdagrses are divided into multiple
sections. In this case, it is necessary to dividestudents enrolled in each course into
sections that will constitute the classes.

Currently, the timetable for Purdue University enstructed manually. We have
proposed an automated timetabling system to stlgeritial as well as the minimal
perturbation problem in [MR04, MRBO5]. This solutias based on the iterative
forward search algorithm described in the followatmpters.

Problem Representation

Due to the set of standardized time patterns andrastrative rules enforced at
the university, it is generally possible to reprdasall meetings of a class by a single
variable. This tying together of meetings considgrasimplifies the problem
constraints. Most classes have all meetings taughhe same room, by the same
instructor, at the same time of day. Only the dbweek differs. Moreover, these days
and times are mapped together with the help ofimgehatterns, e.g., a 2 hows3 day
per week class can be taught only on Monday, Wetdyesriday, beginning at 5
possible times.

In addition, all valid placements of a course ia thmetable have a one-to-one
mapping with values in the variable's domain. Tdosnain can be seen as a subset of
the Cartesian product of the possible starting sirneoms, etc. for a class represented
by these values. Therefore, each value encodessdlected time pattern (some
alternatives may occur, e.g., 1.5 hou2 day per week may be an alternative to 1 hour
x 3 day per week), selected days (e.g., a two ngeatmurse can be taught in
Monday+Wednesday, Tuesday+Thursday, Wednesday+fridad possible starting
times. A value also encodes the instructor andcsslemeeting room. Each such
placement also encodes its preferences (soft @ntsty, combined from the preference
for time, room, building and the room's availabtpiigment. Only placements with
valid times and rooms are present in a class's uoriar example, when a computer
(classroom equipment) is required, only placeménta room containing a computer
are present. Also, only rooms large enough to accodate all the enrolled students
can be present in valid class placements. Simjlafly time slice is prohibited, no
placement containing this time slice is in the ggslomain.

The variable and value encodings described abaee las with only two types
of hard constraints to be implemented: resourcestcaimts (expressing that only one
course can be taught by an instructor or in a @der room at the same time), and
group constraints (expressing relations betweeearaéelasses, e.g., that two sections of
the same lecture can not be taught at the same @imihat some classes have to be
taught one immediately after another).

There are three types of soft constraints in thablem. First, there are soft
requirements on possible times, buildings, roonmg] elassroom equipment (e.g., a
computer or a projector). These preferences aressed as integers:

« -2 ... strongly preferred

« -1... preferred

« 0 ... neutral (no preference)
« 1 ...discouraged

« 2 ... strongly discouraged

As mentioned above, each value, besides encodicigsa's placement (time,
room, instructor), also contains information abtin preference for the given time and
room. Room preference is a combination of prefexemmn the choice of building, room,
and classroom equipment. The second group of soistaints is formed by student
requirements. Each student can enrol in severaketa so the aim is to minimize the
total number of student conflicts among these elsSuch conflicts occur if the
student cannot attend two classes to which he @hals enrolled because these classes
have overlapping times. Finally, there are someugroonstraints (additional relations
between two or more classes). These may eitheatue(required or prohibited), or soft
(preferred), similar to the time and room prefeenfrom -2 to 2).

4. lterative Forward Search Algorithm

The iterative forward search (IFS) algorithm tha propose here is based on
ideas of local search methods [MF00]. However, ontrast to classical local search
techniques, it operates over feasible, though aoéssarily complete solutions. In such
a solution, some variables can be left unassig8alil.all hard constraints on assigned
variables must be satisfied. Similarly to backtragkbased algorithms, this means that
there are no violations of hard constraints.

Working with feasible incomplete assignments hagis¢ advantages compared
to the complete infeasible assignments that usealtyr in local search techniques. For
example, when the solver is not able to find a tsmiu(i.e., a complete feasible
assignment), a largest feasible partial assignriesihg cardinality) can be returned.
Especially in interactive timetabling applicatiossich assignments are much easier to
visualize, even during the search, since no harstcaints are violated. For instance,
two lectures never use a single resource (e.dassroom) at the same time. Moreover,
because of the iterative character of the seahehalgorithm can easily start, stop, or
continue from any feasible assignment, either cetepbdr incomplete.

Iterative forward search works in iterations (segufe 4.1. for algorithm).
During each step, a variable A is initially select@ypically an unassigned variable is
chosen like in backtracking-based search. An asdigrariable may be selected when
all variables are assigned but the solution fouméhs is not good enough (for example,
when there are still many violations of soft coastts). Once a variable A is selected, a
valuea from its domain RQ is chosen for assignment. Even if the best valuselected
(whatever “best” means), its assignment to thecsaetevariable may cause some hard
conflicts with already assigned variables. Suchfladimg assignments are removed
from the solution and become unassigned. Findlly,selected value is assigned to the
selected variable.

The algorithm attempts to move from one (partiadsible solutiow to another
via repetitive assignment of a selected vadut® a selected variable A. During this
search, the feasibility of all hard constraints each iteration step is enforced by

-7-

unassigning the conflicting assignmentécomputed by functiogonflicty. The search
is terminated when the requested solution is faamahen there is a timeout expressed,
for example, as a maximal number of iterations \@ilable time being reached. The
best solution found is then returned.

procedure ifs(V,D, C o) // an initial assignment o is the paraneter
o= qa /1 current assignnent
B = a /] best assignnmen
whi | e canContinue(o) do /] CSP problem @=(V,D,C) is
A = selectVariable(o); /1 a gl obal paraneter
a = sel ectValue(ao, A; /!l for all used functions
n = conflicts(o, A a); //conflicting assignments
o= (o- n) O{Aa}; /I next assi gnnment
if better(o, B) then p = o
end while
return g;
end procedure

Fig. 4.1.The iterative forward search algorithm
The above algorithm schema is parameterized by aefumctions, namely

« the termination condition (functiacanContinug

« the solution comparator (functidretter),

 the variable selection (functigelectVariablgand
+ the value selection (functigelectValug

4.1.1. Termination Condition

The termination condition determines when the atlgor should finish. For
example, the solver should terminate when the malximmber of iterations or some
other given timeout value is reached. Moreoverait stop the search process when the
current assignment is good enough, e.g., all versabre assigned and/or some other
solution parameters are in the required rangese¥ample, the solver can stop when all
variables are assigned and less than 10% of the wistraints are violated.
Termination of the process by the user can alsm fert of the termination condition.

4.1.2. Solution Comparator

The solution comparator compares two assignmemscurrent assignment and
the best assignment found. This comparison can dsedoon several criteria. For
example, it can lexicographically order assignmeatsording to the number of
unassigned variables (a smaller number is betted) the number of violated soft
constraints.

4.1.3. Variable Selection

As mentioned above, the presented algorithm regjuréunction that selects a
variable to be (re)assigned during the currenaiien step. This function is equivalent
to a variable selection criterion in constraintgreamming. There are several guidelines
for selecting a variable [Dech03]. In local seattie, variable participating in the largest
number of violations is usually selected first. backtracking-based algorithms, the

-8-

first-fail principle is often used, i.e., a variablvhose instantiation is most complicated
is selected first. This could be the variable imeadl in the largest set of constraints or
the variable with the smallest domain, etc.

We can split the variable selection criterion it cases. If some variables
remain unassigned, the “worst” variable among tieselected, i.e., first-fail principle
is applied. This may be, for example, the variatith the smallest domain or with the
highest number of hard and/or soft constraints.

The second case occurs when all variables areneskigecause the algorithm
does not need to stop when a complete feasiblgramsnt is found, the variable
selection criterion for such case has to be comsitlas well. Here all variables are
assigned but the assignment is not good enough, ie.ghe sense of violated soft
constraints. We choose a variable whose change \@lge can introduce the best
improvement of the assignment. It may, for examipéea variable whose value violates
the highest number of soft constraints.

It is possible for the assignment to become inceteplagain after such
an iteration because a value which is not condistgth all hard constraints can be
selected in the value selection criterion. This t@&nalso taken into account in the
variable selection heuristics.

4.1.4. Value Selection

After a variable is selected, we need to find aueato be assigned to the
variable. This problem is usually called “valueesgion” in constraint programming
[Dech03]. Typically, the most useful advice is &lext the best-fit value. So, we are
looking for a value which is the most preferred floe variable and which causes the
least trouble as well. This means that we needhtbd value with the minimal potential
for future conflicts with other variables. For exaley a value which violates the
smallest number of soft constraints can be seleatadng those with the smallest
number of hard conflicts.

To avoid cycling, it is possible to randomize tledue selection procedure. For
example, it is possible to select the N best vafoeghe variable and choose one of
them randomly. Or, it is possible to select a $etatues so that the heuristic evaluation
for the worst value in this group is maximally prgent higher than the heuristic
evaluation of the best value (where smaller valeams better evaluation). Again, the
value is selected randomly from this group. Thisosel rule inhibits randomness if
there is a single very good value.

4.2. |IFS for Minimal Perturbation Problem

Let us first describe the meaning of perturbatiorour approach. The changed
problem differs from the initial problem by inpuégurbations. An input perturbation
means that a variable must have different valuethéninitial and changed problem
because of some input changes (e.g., a courselraustheduled at a different time in
the changed problem).

The solution to the minimal perturbation problemRR) [SW00, BMRO3,
BMRO04] can be evaluated by the number of additigeaturbations. They are given by
subtraction of the final number of perturbationsl &me number of input perturbations.
An alternative approach is to consider variableghm initial and in the new problem

which were assigned differently [RRH02, BMRO03, BMROAs before, we need to
minimize the number of such differently assignedalaes.

Despite the local search nature of the algorithmere are some adjustments
needed to be able to effectively solve the MPP. Jimpose of these adjustments is to
minimize the number of additional perturbationse ®asiest way to do this is to adopt
variable and value selection heuristics which préfe previous assignments (but not
all the time, to avoid cycling).

For example, value selection heuristics can be tadoj select the initial value
(if it exists) randomly with a probability P (it cde rather high, e.g., between 50-90%).
If the initial value is not selected, the originalue selection can be executed. Also, if
there is the initial value in the set of best-iwes (e.g., among values with the minimal
number of hard and soft conflicts), the initial valcan be preferred as well. Otherwise,
a value can be selected randomly from the constdusiet of best-fit values. A
disadvantage of such selection is that the proibalfilhas to be selected carefully: if it
is too small, the search can easily move away dra rfumber of additional
perturbations will grow during the search. If ittmo high, the search will stick too
much with the initial solution and, if there is molution with a small amount of
additional perturbations it will be hard to findemsible solution.

Another approach is to limit the number of addisibperturbations during the
search. Furthermore, like in branch and bound, sutimit can be decreased when a
feasible solution with the given number of pertdidoas is found. For example, if the
number of additional perturbations is equal to @ager than the limit, the initial value
has to be selected. Otherwise, if the number oftiaddl perturbations is below the
limit, the original value selection strategy isléved. The number of additional
perturbations can also include variables that ateassigned yet whose initial values
cause a hard conflict with the current assignments.

The above approaches can also be combined togethieh can help to divide
their influence during the search.

Variable selection heuristics can also be adopidithtl a solution with a small
number of perturbations. For example, when allaldés are assigned, a variable that
has an initial value but such value is not assignetishould be selected, e.g., randomly
among all variables that have not the initial vahssigned, and that participate in the
highest number of violated soft constraints.

4.3. Conflict-based Statistics

Value ordering heuristics play an important rolesmlving various problems.
They allow choosing suitable values for particWariables to compute a complete
and/or optimal solution. Problem-specific heuristiare usually applied because
problem-independent heuristics are computationakpensive. Here we propose an
efficient problem-independent approach to valued&n whose aim is to recognize
good and poor values.

Methods similar to conflict-based statistics (CB®)re successfully applied in
earlier works [DF02, JLO2]. In the weighting-confliheuristics presented in [JL0O2], a
weight is associated with each decision (assignnoéné value to a variable). It
characterizes the number of times that the decis&mnappeared in any conflict. It also
takes the arity of a conflict into account. Eacheia conflict is found, the weight of its
decision constraints (i.e., assignments which ar¢hé conflict) is increased by/rl
wherer is the arity of the conflicting constraint. Theseights are used for selections of
decisions which are negated when a dead-end ikedac

-10 -

In our approach, the conflict-based statistics wosls an advice in the value
selection criterion. It helps to avoid repetitivmsuitable assignments of the same value
to a variable. In particular, conflicts caused Mystassignment in the past are
memorized. In contrast to the weighting-conflicuhistics proposed in [JLO2], conflict
assignments are memorized together with the assighmhich caused them. Also, we
propose our statistics to be unlimited, to presart-term as well as long-term cycles.

The main idea behind conflict-based statisticsoisnmemorize conflicts and
discourage their future repetition. For instanchemwa value is assigned to a variable,
conflicts with some other assigned variables maguncThis means that there are one
or more constraints which prohibit the applied gissient together with the existing
assignments. A counter, tracking how many times suctevent occurred in the past, is
stored in memory. If a variable is selected foraasignment (or reassignment) again,
the stored information about repetition of pastflicts is taken into account.

Conflict-based statistics is a data structure thamorizes hard conflicts which
have occurred during the search together with thiequency and assignments which
caused them. More precisely, it is an array

CBS[Va: Va— — Vb: Vb] = Cab.

It means that the assignment ¥ v, caused g times a hard conflict with the
assignment M=V, in the past. Note that it does not imply that éhassignments M= v,
and 4, = v, cannot be used together in case of non-binary intt. The proposed
conflict-based statistics does not actually workhvéiny constraints. It only memorizes
the conflict assignments together with the assignmaich caused them. This helps us
capture similar cases as well, e.g., when the ep@issignment violates a constraint
different from the past ones, but some of the ectatonflicts are the same. It also
reduces the total space allocated by the statistics

The conflict-based statistics can be implemented hash table. Such structure
is empty in the beginning. During computation, 8teucture contains only non-zero
counters. A counter is maintained for a tuple [& => = B =b] in case that the valuee
was selected for the variable A and this assignnderta caused a conflict with an
existing assignment B b An example of this structure

A=a — 3x-B=h 4x-B=c, 2x-C=3 120x-D=a

expresses that variable B conflicts three timek w& assignmertt and four times with
its assignment, variable C conflicts two times with its assignrharand D conflicts
120 times with its assignmeat all because of later selections of vatuler variable A.
This structure can be used in the value selectamistics to evaluate conflicts with the
assigned variables. For example, if there is aabdgi A selected and its valeis in
conflict with an assignment Bl we know that a similar problem has already oalirr
3 times in the past, and the conflict Aa=an be weighted with the number 3.

The conflict-based statistics is being used in Yhkie selection criterion. A
trivial min-conflict value selection criterion sets a value with the minimal number of
conflicts with the existing assignments. This hstits can be easily adapted to a
weighted min-conflict criterion. Here the value lwihe smallest sum of the number of
conflicts multiplied by their frequencies is sektt Stated in another way, the weighted
min-conflict approach helps to select a certairugathat might cause more conflicts
than another value. The point is that these cdsflize not so frequent, and therefore
they have a lower weighted sum. Our hope is thearit considerably help the search to
get out of a local minimum.

-11 -

4.4. Summary

In this section, we have presented the iterativedod search algorithm which is
a mixture of systematic search and the local seapghoach. In the following section,
we will discuss some of its extensions and latewerwill present some computational
results of this algorithm used on a CSP problemwali as on the large lecture
timetabling problem on Purdue University.

The very first version of this algorithm was preehin [MB0O1] and in the
diploma thesis [Mul01] as an ad-hoc solution foe titerative lecture timetabling
problem. Its application on lecture timetabling ldesm on Mathematics and Physics
Faculty of Charles University was presented in [NBOThe applicability of this
algorithm on the n-queens problem was presentfdut02].

The iterative forward search algorithm in the foa® it is presented in this
chapter for solving of a general CSP with varioxtelesions (conflict-based heuristics,
maintenance of arc consistency, its extension tdsvatynamic backtracking) was
presented in [MBRO4]. Its application to the mininp&rturbation problem of Purdue
University timetabling was presented in [MR04, MRBQOAIso, we used this algorithm
in comparison with a branch&bound algorithm des@yher solving MPP problem in
[BMRO04] where it was better than the proposed bh&bound algorithm.

5. EXxperimental Results

The iterative forward search has been implememtekva. It contains a general
implementation of the iterative search algorithnheTgeneral solver operates over
abstract variables and values with a selectionwafil@able extensions, basic general
heuristics, solution comparators, and terminatiomcfions. It may be customized to fit
a particular problem (e.g., as it has been extefoledurdue University timetabling) by
implementing variable and value definitions, addimard and soft constraints, and
extending the parametric functions of the algorithm

In this chapter, we present capabilities of iteaforward search on the real-life
course timetabling problem of Purdue Universitye(sbapter 3.1 for the description of
the problem). Results from solving both initialvesll as minimal perturbation problems
are presented.

The following experiments were performed on the plete Fall 2004 data set,
including 830 classes to be placed in 50 classrodrhe classes included represent
89,677 course requirements for 29,808 studentsh&Ve achieved similar results with
Fall 2001, Spring 2005 and Fall 2005 data sets @§ wven though they are quite
different in the number of requirements (Fall 20®4he most constrained one out of
these four data sets).

Besides the discussed IFS solver, the timetablipgli@tion for Purdue
University also contains a web-based graphical uterface (written using Java Server
Pages) which allows management of several versiohsthe data sets (input
requirements, solutions, changes, etc.), browsiagésultant solutions (see Figure 5.1),
and tracking and managing changes between them.

-12 -

A Large Lecture Room Timetabling ¥1.0 - Microsoft Internet Explorer =181 x|
| soubor Upravy zobrszt Oblbené Méstrole Mépovida HAgresa [Hetps: vy, smnas. purdue, sduf Trkbl2004Faljindsxc. jsp =l et ﬁ
S Timetable =

[Purdue Timetable

EE | 7:30a 9:30a 10:30a 11:30a 3:30p
= Input Configuration 270
U Buildings Mon ECET209 1001 |AUSLZ27 1001 |CSR331 1001 HIST104 4001 | ECE327 1001
[Rooms 0, .0 1 2 0, .0 2 2 0,0,0
ue
O Instructors T CPT285 1001 P8Y235 2001 HIST151 2001 ECE311 2001 ECE311 1001
[Classes 1 0,0,0 2 1
[Constraints Wed | ECET214 1001
[Timetable
[solver Thu CPT385 1001 PSY235 2001 HIST151 2001 ECE311 2001 ECE311 1001
[Bundled LS Salver U : U
O Alone LS Solver Fri [ECET214 1001 ECET209 1001 |AUSL227 1001|CSR3I 1001 ‘ HIST104 4001| ECE321 10
1 2 2 2 0,00
[Conf. Statistics =
1 Administration EE | 7:30a 8:30a 9:30a 10:30a 11:30a 12:30a 1:30p 2300
[users
o w HTM181 1001 | |E2301001 | ¢ 83621001 | MATS1 3001 F8Y¥200 2001
ersions 1 00,0
[Export Input Cfg
2 EA5221 1001 HIST103 4001 F&MN202 1001
O Timings 5 1 1 0,0,0
[Debug
IE2301001 | C 53521001 | MA151 3001 PSY¥200 2001 (ECET196 1(
O] Data Configuration 1 00,0
EAS221 1001 HIST102 4001 FE&M202 1001
& 1 1 00,0

HTM181 1001 PSY200 2001 (ECET1961(

IE2301001 | 53521001 | MA151 3001
1

8:30a 0:30a 10:30a 11:30a 12:30a 2:30p 3:30p
MAT1 1001 PSY1204001 | MATGT 2001 | M&162 1001 |PHIL330 1001 AGRY3201001| MA1632 200
0 0,0,0 2 52,2 1

PSY1201001

PSv120 5000 |
211

HIST152 2001
1

Login: mullsr -

Name: Tamas Muller MAT61 1001 PSY120 4001 | MA1612001 | MA1B21001 |PHILI30 1001 [AGRY3201001| MA162 20

Datai FALL 2004 53 rfo 60 0 2 522 1

server: v1.0 alpha build149 I | e oo oo eren EnE——— D 2
Fri, 11 Jun 2004 ‘ | »

3] RN
Fig. 6.1.Generated timetable in web-based graphical useriace.

Search Algorithm

The quality of a solution is expressed as a wedlsiem combining soft time
and classroom preferences, satisfied soft groustaints and the total number of
student conflicts. This allows us to express theadrtance of different types of soft
constraints. The following weights are considerethe sum:

+ Wastugent... Weight of a student conflict,

+ Wine ... Weight of a time preference of a placement,

+ Wioom ... Weight of a classroom preference of a placement,

+ Woeonstr... Weight of a preference of a satisfied soft groapstraint,

Note that preferences of all time, classroom amdigisoft constraints go from -
2 (strongly preferred) to 2 (strongly discourage®d, for instance, the value of the
weighted sum is increased when there is a discedrdigne or room selected or a
discouraged group constraint satisfied. Therefibréhere are two solutions, the better
solution of them has the lower weighted sum ofaheve criteria. Moreover, additional
solution parameters can be included in this comsparias well. For instance, we can
also discourage empty half-hour time segments letwetasses (such half-hours cannot
be used since all events require at least one fwuwsage of classrooms that are too
large (having more than 50% excess seats).

The termination condition stops the search whensthiation is complete and
good enough (expressed by the solution qualityrdeset above and, in case of minimal
perturbation problem also by the number of alloyedturbations). It also allows for
the solver to be stopped by the user. Charactsisfithe current and the best achieved
solution, describing the number of assigned vaembiime and classroom preferences,
the total number of student conflicts, etc., asble to the user during the search.

-13 -

The solution comparator prefers a more completaeitisol (with a smaller
number of unassigned variables). In case of minipeaturbation problem, a solution
with a smaller number of perturbations among sohsiwith the same number of
unassigned variables is preferred. If both solgtioave the same number of unassigned
variables (and perturbations), the solution ofdrequality is selected.

If there are one or more variables unassigned,vém@able selection criterion
picks one of them randomly. We have tried sevepgr@aches using domain sizes,
number of previous assignments, numbers of conssrain which the variable
participates, etc., but there was no significargriorement in this timetabling problem
towards the random selection of an unassignedblaridhe reason is, that it is easy to
go back when a wrong variable is picked - suchrebte is unassigned when there is
a conflict with it in some of the subsequent itenas.

When all variables are assigned, an evaluation @&lemfor each variable
according to the above described weights. The bkriavith the worst evaluation is
selected. This variable promises the best imprownineoptimisation.

We have implemented a hierarchical handling of thkie selection criteria.
There are three levels of comparison. At each leveleighted sum of the criteria
described below is computed. Only solutions with smallest sum are considered in
the next level. The weights express how quicklyomplete solution should be found.
Only hard constraints are satisfied in the firstelesum. Distance from the initial
solution (MPP), and a weighting of major preferendencluding time, classroom
requirements and student conflicts), are considareéte next level. In the third level,
other minor criteria are considered. In generafkitarion can be used in more than one
level, e.g., with different weights.

The above sums order the values lexicographictily: best value having the
smallest first level sum, the smallest second leweh among values with the smallest
first level sum, and the smallest third level sumoag these values. As mentioned
above, this allows diversification between the imi@oce of individual criteria. In
general, there can be more than three levels sktheeighted sums, however three of
them seem to be sufficient for spreading weightgaoious criteria for our problem.

The value selection heuristics also allow for randselection of a value with a
given probability R, (random walk, e.g., 2%) and, in the case of M®Psdlect the
initial value (if it exists) with a given probali P (e.g., 70%).

Criteria used in the value selection heuristics bandivided into two sets.
Criteria in the first set are intended to genesat®mplete assignment:

« Number of hard conflicts, weighted by: 1 in the first level, \Vont2 in the
second level and Mn;3in the third level.

« Number of hard conflicts, weighted by their predooccurrences (see
section 4.3 about conflict-based statistics) an¥ {yns 1.3

Additional criteria allow better results to be amled during optimisation:

« Number of student conflicts caused by the valué is assigned to the
variable, weighted by ¥dent 1.3

- Soft time conflicts caused by a value if it is gssid to the variable,
weighted by Vme 1.3

« Soft classroom conflicts caused by a value if iassigned to the variable
(combination of the placement's building, room, afemssroom equipment
compared with preferences), weighted hyo¥1.3

-14 -

- Preferences of satisfied soft group constraintsedwy the value if it is
assigned to the variable, weighted by \r 1.3

- Difference in the number of assigned initial valifatie value is assigned to
the variable (weighted by Mit1.3): -1 if the value is initial, O otherwise,
increased by the number of initial values assigteedariables with hard
conflicts with the value.

Let us emphasize that the criteria from the secgrmlp are needed for
optimisation only, i.e., they are not needed tal fan feasible solution. Furthermore,
assigning a different weight to a particular créeinfluences the value of the
corresponding objective function (e.g., see FiguBewith comparison for optimisation
criteria Vswdent,1. 8ANd Mime,1.3. The solver returns good results in reasonabie e.qg.,
in 30 minutes time limit) when the total sum of theights used in additional criteria in
the first level corresponds to one half of the WéeNwconr 1. The weights in the second
level usually correspond to the weights used far #wolution quality comparison
(Wstudent Wtime; Wroom Wconsta-

Below, we present two types of experiments. Th& fnvestigates finding an
initial solution (e.g., when all requirements aftaced in the system). This is followed
by experiments on the minimal perturbation problgny., where there is an existing
solution plus a set of changes to be applied t&i)ving an initial problem can be seen
as a special case of MPP where all variables ave aral therefore have no initial
values.

If not stated otherwise, the solution quality weggNVswden: Wime, Wroom @and
Weonstrin the solution quality weighted sum are set tmze the following experiments.
First level weight for the weighted hard conflidgcons 1 iS set to 1, all other weights in
the value selection criterion are set to zero. Atbere is no random value selection
(Pw=0). This way, by default, only the hard constmi@ire considered during the
search. We will show how the other weights influetiee search process and the overall
solution quality. Also, if not stated otherwisestdinces between buildings are not
considered and department balancing is not useslrdsults presented in the following
chapters were computed on 1GHz Pentium 3 PC runfifimglows 2000, with 512 MB
RAM and JDK 1.4.2.

5.1. Initial Problem

The experiments in Figure 5.2 present the behawbuhe solver wrt. various
settings of weights for particular criteria (theud#nt conflicts, violated time
preferences, and violated room preferences). imrtant to see that the weights for
particular criteria can be easily adjusted. It\wao emphasize or suppress particular
optimization criteria and it results in the corresging change of the solution quality.

Time refers to the amount of time required by the soteefind the presented
solution. Satisfied enrolmentgives the percentage of satisfied requirementsdarses
chosen by studentBreferred timeandpreferred roomcorrespond to the satisfaction of
time and room preferences respectively. 100% cporeds to a case when all classes
are placed in their most preferred times or roo@%, means a case when the least
preferred locations are used. Preferences of sofipgconstraints are not presented,
since there are no such constraints in the Falll 20ia set (all group constraints are
either required or prohibited).

-15 -

Test case No preference Students Time Room

Assigned variables [%] 100.00 £ 0.00 | 100.00 +0.00 | 100.00 +0.00 | 100.00 +0.00

Time [min] 0.16 £ 0.03 8.45+ 4.40 18.68 + 6.50 0.17+0.01

Satisfied enrolments [%)] 98.26 +0.15 99.74 +0.02 98.20+0.13 98.18 £0.24

Preferred time [%)] 62.54 +£1.19 65.33+1.45 98.75+0.13 62.14 £0.94

Preferred room [%] 63.64 +2.29 62.60 + 1.66 62.82 +2.07 98.58 £ 0.29
Students + Students +

Test case Time Time + Rooms No CBS

Assigned variables [%] 100.00 £ 0.00 | 100.00+£0.00 | 98.42+0.20

Time [min] 19.96+5.34 | 14.79+4.87 | 24.08+4.42

Satisfied enrolments [%)] 99.61 +0.03 99.79+0.01 99.52 +0.06

Preferred time [%] 95.70+0.32 95.02 +0.37 94.62 +0.43

Preferred room [%] 62.68 +2.23 75.30 + 2.30 62.82 +2.07

Fig. 6.2.Solutions of the initial problem

A complete solution was found on every run of apperiments. Average values
together with their RMS (root-mean-square) varianoé the best achieved solutions
from 10 different runs found within 30 minute tidmit are presented.

The experiment marketo preferencepresents average solutions obtained
without any preferences on the soft constraints.salution quality weights W and
value selection weights V are set to zero, excéte@weight \lconr =1 (weight of the
weighted hard conflicts in the first level of thalwe selection).

The following five experiments marke&tudents Time and Rooms are
minimizing just one of the criteria: the studennficts, violated time preferences and
violated room preferenceStudentexperiment uses the same weightdlagpreference
experiment, but student weights are the followiNGiudent 0.5, Vstudent &Wstudent1.
Similarly, Time experiment uses weights i :=0.5, Vime =Wime=1 and Rooms
experiment weights Mom.=0.5, Vioom =Wroon=1.

The experiment marke8tudents + Timesqually combines student conflicts
with time preferences, weights areswMentFviime,1=0.25, Vbwdent,F=Viime,=Wstudent
Wime=1.

The next experiment (marke&tudents + Time + Roomsmost closely
corresponds to reality. Here all the soft prefeesrare considered. Student conflicts and
time preferences are weighted equally, room prafese are considered much less
important. Weights of student conflicts and timefprences are the same as in the
previous experiment (marke8tudents + Time Moreover, the weights on room
preferences are dm =Wroon=0.2. Note that rooms are not considered in trst Ravel
of the value selection criteria.

Finally, the last experiment (markedo CB$ presents average solutions
obtained from the solver without conflict-based tistecs. The weights on soft
constraints are the same as in the previous expatirBut there is Mn;1=1 (weight of
a hard conflict) instead of Wonr=1 (weight of a hard conflict weighted by CBS).
Vweon1 IS Set to zero. The solver was not able to fincbmplete solution within the
given 30 minute time limit, not even when 2% randevalk selection was used
Pw=0.02) to avoid cycling. Furthermore, there weréeast 5 unassigned classes after 3
hours of running time.

On the Purdue Timetabling Problem, conflict-basedistics proved itself not
only as a technique which can improve the solutjoality, but as a technique which
can help us to find a complete feasible solution.

Figure 5.3 compares several experiments givingedfit stress on student
conflicts and time preferences. Average values ftbenbest solutions of 10 different
runs found within 30 minute time limit are preseht©nly student conflicts or time

-16 -

preferences are considered in the border expersmerdrked studentsand time
respectively. In the middle (experiment marked Z1:&fudent conflicts and time
preferences are equally weighted. The experimemkena3:1 prefers student conflicts
three times as much as time preferences (i.e. hige@ student conflicts are three times
higher than weights of time preferences) and vieesa. For instance, the experiment
marked 1:2 has the following weights: w¥nti=1, VstwdentE0.2, Mime,1=0.4,

V student,&Wstudent 1, Viime,=Wiime=2.

80%
60%
40%
20%

0%

100%
95% -
90% -
85% -

80% -
-20% -

-40%
-60%
-80%

75% -
70%
65% -

60% -100%

T T T
students 3:1 2:1 11 1:2 1:3 time students 3:1 2:1 11 1:2 1:3 time
-»- Satisfied st. enroliments- Time preferences -»- Satisfied st. enrollments- Time preferences

Fig. 6.3. Comparison of satisfied student enrolments and preferences: average
quality of the solution (left), improvement of 8wdution in terms of
percentage of the 1:1 solution (right).

5.1.1. Minimal Perturbation Problem

The following experiments were conducted on onetlef complete initial
solutions computed in the previous set of experisiécolumn marke&tudents + Time
+ Roomin Figure 5.2). Input perturbations were generatech that a given number of
randomly selected variables were not allowed taimethe values they were assigned in
the initial solution. Therefore, these classesmatnbe scheduled to the same placement
as in the initial solution (either room or startitnge must be different). Only variables
with more than one value in their domains were udeal each number of input
perturbations, ten different sets of input perttidres (i.e., variables with initial values
prohibited) were generated. The following figurbsws the average parameter values of
the best solutions found within 10 minutes.

The aim of the first set of experiments is to fiad suitable setting for
Pinit (probability of selection of an initial value) a1 3(difference in the number of
assigned initial values). In each experiment, weehexecuted 10 tests for each of 10,
20, 30, ... 100 input perturbations respective§0(tuns in total). The average numbers
of assigned variables together with the averagebeusnof additional perturbations are
presented in Figure 5.3. One or a combination @fctiiteria is used in each experiment.
The second column refers to the set of criterizmdesd in Figure 5.4.

Let us explain the contents of this table. Foranst, the expression 025
1.0s=; in the column marked Mgents.smeans that Yudents 1S set to 0.25 and Mdents 2IS
set to 1. The first cas&ifit=0) corresponds to the settings of thudents + Time +
Roomexperiment. In remaininginit sets, we tried to decrease the importancetloéro
value selection criteria in comparison with thgnVcriterion. ForAinit=1, the first level
value selection criterion M1 IS used and the other optimisation criteria whigdre
placed in the first level are disableds{Ment1 Vime,1 are set to zero). And the third line
Ainit=2 corresponds to a case when the second alaé selection criterion M2 iS

-17 -

used and the other optimisation criteria from teeosd level (Mudentz Vime.2 Vioom.2

are moved to the third level.

Test case Assigned Number of
Pt Ainit | variables [%] | perturbations
0.5 0 100.00 13.83
0.6 0 99.98 13.48
0.7 0 99.96 13.33
0.8 0 99.95 12.94

0 2 100.00 31.40
0.6 2 99.99 13.26

0 1 100.00 13.70
0.6 1 100.00 11.90

Fig. 6.4.Comparison of several approaches to MPP.

Ainit V ainit,i Vstudents s Viime,t Vioom,r
0 - 0.2541,1.04 0.255;, 1.0, 0.2-
1 0.5 1.0 1.0 0.2
2 1.0 0.2543,1.043 | 0253, 1.0¢3 0.23
Fig. 6.5.Meaning ofAinit
Let us discuss particular experiments from Figude v~ the first four

experiments (marked;#=0.5, ..., Ri=0.8), the minimal perturbation problem was
solved only by changing the value selection citexd that it selected an initial value
with a given probability (50%, 60%, 70% and 80%pexdively). Otherwise, it worked
exactly asStudents + Time + Roomxperiment, since all the other weights were the
same. As the;i probability is rising, we can see that the avenag@ber of additional
perturbations is descending, but the algorithnmoasing the ability to find a complete
solution in every run (in the given 10 minute titimait).

Similarly, we can see that using just the secondllgalue selection criterion
Vainit2 IS able to find a complete solution all the tinet the average number of
additional perturbations is too high. A combinatisith the 60% probability of an
initial value selection helps to improve the averagimber of additional perturbations,
but again, there were some cases where a complat®os was not found.

Using the first level value selection criteriaj/1 seems to be very promising.
With this criterion, we were able to find a completolution to all the presented
experiments. Moreover, the experiment markg@=B.6, Ainit=1 (combining Minit1
with 60% initial value selection probability) gaws the best results from the above
experiments, since the average number of additipedlrbations was the lowest. The
following results (Figures 5.6 and 5.7) were coregutising the weights from this
experiment.

Figure 5.6 presents the average number of additipaedurbations (variables
that were not assigned to their initial value thougot prohibited). Additional
perturbations are presented wrt. the absolute numb@put perturbation (i.e., up to
about 13.4% of input perturbations is considerdthe best solution found within 10
minutes from each experiment is taken into accodite number of additional
perturbations grows with the number of input pdragions.

-18 -

80%

T T T T T T T T T
I I I I I I I I I
14 | | | | | | | | = 70% -
| | | | | | | =
C12 & — Lo gt [T 0%
212 I I oy 7 | I I §60A)
i I I I I I I I I 8 i
£10 I I I I I I I I g 50%
£ | | * | | | | | | £
o8 T T T T T T T T T T T 2 40%
o | (3 | | | | | | | @
SO T T T T T T T 2 30% -
5 | | | | | | | | ©
R e e R e e e S 20% -
k] o1 I I I I I I I I %
e [I _
<2 I I I I I I I I I T 10%
0 — 0% ‘ —
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Input perturbations Input perturbations

Fig. 6.6.Absolute number of average additional perturbatifieft) and average
additional perturbations in terms of percentagetaf number of input
perturbations (right).

The graph on Figure 5.7 (left) shows the averagalityuof the resulting
solutions in the same manner as presented in FigdreBecause the initial solution is
(at least locally) optimal, and because the nundfeadditional perturbations is the
primary minimization criteria, it is not surprisitigat the quality of the solution declines
with an increasing number of input perturbationdie Tweighting between time
preferences, student conflicts, and other parasei@nsidered in the optimisation can
have a similar influence as seen in the initialisohs.

100% 400 T T T T T
| | | | | | | | |
| | | | 350 4 | | | | " |
95% | | | | | | | | |
| | 300 - | - " | .
90% | l\ \L | | | : : | : :
850 | | | | | | '3250”7777\77.77 T
5% - | | | | | | — | | | | |
° | | | | | | gzoo”””i B e e e
| | | | | | = | w | |
80% -~~~ B e TR I P I = T Rt Y. S
| | | | | | | | | | |
| | A | | | R - e
75% i T] | x ¥ T 100] | | | I |
| | | | | | =0 T B
70% T T T } } } } } } . : : : : :
0O 10 20 30 40 50 60 70 80 90 100 0 #*— T T T T T T T 1
Input perturbations 0 10 20 30 40 50 60 70 80 90 100
+ Student conflicts [%)] = Time preferences [%] & Room preferences [%] Input perturbations

Fig. 6.7.Average solution quality (left), average time (yigt

Finally, the graph in Figure 5.7 (right) preserits average time needed to find
the best solution. Note that a 10 minutes timetlion finding the best solution was set.
The influence of this limit is seen mostly on thght portion of the chart, where the
number of input perturbations exceeds 50.

5.2. Summary

We have proposed and implemented a solution torge Iacale university
timetabling problem. Our proposal includes a nesvaitive forward search algorithm
that is extended by conflict-based statistics wiiain be generalized to other search
algorithms. Both ideas combined together sufficedlve the problem and the role of
additional heuristics can be minimized. Our problepiver is able to construct a
demand-driven timetable as well as incorporate oyoaaspects. The initial solution
generated by our solver satisfies the course régjuEsmore than 99% of students
together with about 95% of time requirements. Ta®mated search was able to find

-19-

suitable times and classrooms for all classes. ekperiments with a MPP give us very
promising results as well. Within 10 minutes, tlidver was able to find a complete,
high quality solution with a small number of adalital perturbations.

Moreover, the used heuristics can be tuned to malkinfulfil the user
requirements, e.g., when there is a need of a -wH#dbetween several objective
functions. We have demonstrated this, for instancehe experiment giving different
stress on the satisfied student enrolments and pireerences for Purdue University
timetabling problem (see figure 5.2).

6. Conclusion

In this thesis, we have presented an iterative dodvsearch algorithm which is
capable of solving various timetabling as well &hayal constraint satisfaction and
optimisation problems. It is based on local sealuit, it works with partial feasible
solutions, so it is capable of returning a (partsdlution any time during the search.
This might be a very important feature, especidflfthe algorithm is used in an
interactive manner. It can start from any (partsd)ution and it can be used for both
initial and minimal perturbation problem. We havsoapresented various extensions of
this algorithm which can improve the quality of theturned solutions as well as
applicability of the algorithm on various problems.

Also, the presented algorithm works well on thel-hiéa large scale course
timetabling problem at Purdue University. The geted solutions were very well
accepted on Purdue University and they are goingstothis solver in practice as of
semester Spring 2006. Moreover, we are going tenekthis solver to be used not only
for the generation of the central timetable bubdty all the departmental timetabling
problems. These problems are of different structamed also there are some other
constraints which need to be implemented.

The major contributions of this work are: We havefimed a minimal
perturbation problem. This definition is applicable various dynamic problems where
the task is to find a solution of a modified prohlehat is as near as possible to the
solution of the original problem. Next, we have eleyed the iterative forward search
algorithm which is capable as we believe of solwagious constraint satisfaction and
optimisation problems as well as minimal perturmatiproblems. We have also
presented the conflict-based statistics which camded in the framework of IFS or a
local search algorithm and we have shown thatutdcdramatically improve the results
especially when solving optimisation problems. Hinave were able to solve Purdue
university large lecture room timetabling problendave are going to continue using
the presented approaches for the departmental ggnsblas well. Also, we have
published four data sets (from four different seters3 of Purdue timetabling problem
in a clear, anonymous form which can be used astaresting timetabling benchmark.

-20 -

7. Bibliography

BMRO3

BMRO04

BR97

BRO1

CDJD04

CK96

Dech03

DFO02

EGJO3

FW92

GH97

Gin93

Roman Bartak, Tomas Miller, and Hana Ruddfiimal Perturbation
Problem — A Formal ViewNeural Network World (2003), vol. 13, no. 5,
p. 501-511.

Roman Bartdk, Tomas Miller, and Hana Ruddvénew approach to
modelling and solving minimal perturbation problemk Recent
Advances in Constraints, pages 233-249. Springelayd_NAI 3010,
2004.

C. Bessiére and J. C. Régihuc consistency for general constraint
networks: Preliminary resultdn Proceedings of 15th International Joint
Conference on Artificial Intelligence (IJCAI-97)ages 398—404, Nagoya,
Japan, 1997.

C. Bessiere and J. C. RégRefining the basic constraint propagation
algorithm.In Proceedings IJCAI'01, pages 309-315, Seattle A001.

Hadrien Cambazard, Fabien Demazeau, Narehghsien, and Philippe
David. Interactively solving school timetabling problensng extensions
of constraint programmingln Edmund K. Burke and Michael Trick,
editors, PATAT 2004 -Proceedings of the 5th Inteomal Conference on
the Practice and Theory of Automated Timetabliraggs 107-124, 2004.

T. B. Cooper and J.H. KingstoriThe Complexity of Timetable
Construction Problems.In the Practice and Theory of Automated
Timetabling, ed. E.K. Burke and P. Ross, pp. 283-Zpringer-Verlag,

1996.

Rina DechterConstraint ProcessingMorgan Kaufmann Publishers,
2003.

Rina Dechter and Daniel FrosBackjump-based backtracking for
constraint satisfaction problemartificial Intelligence, 136(2):147-188,
2002.

Abdallah Elkhyari, Christelle Guéret, and éyara JussienSolving
dynamic timetabling problems as dynamic resourcestrained project
scheduling problems using new constraint prograngnaols.In Edmund
Burke and Patrick De Causmaecker, editors, Prackicé Theory of
Automated Timetabling, pages 39-59. Springer-VerldgCS 2740,
2003.

Freuder, E.C., Wallace R.[Partial Constraint SatisfactignArtificial
Intelligence, 58:21-70, 1992.

Philippe Galinier and Jin-Kao Hababu search for maximal constraint
satisfaction problemsin Proceedings 3rd International Conference on
Principles and Practice of Constraint Programmipgges 196-208.
Springer-Verlag LNCS 1330, 1997.

Matthew L. GinsbergDynamic backtracking.Journal of Artificial
Intelligence Research, pages 23-46, 1993.

-21 -

lan04

JLO2

Koc02

MBO1

MBO02

MBRO4

MFOO

MJIP92

MRO04

MRBO5

Mul01

Mul02

PMMO04

RMO03

lan MiguelDynamic Flexible Constraint Satisfaction and itspAgation
to Al Planning.Springer, 2004.

Narendra Jussien and Olivier Lhomnh@cal search with constraint
propagation and conflict-based heuristicsArtificial Intelligence,
139(1):21-45, 2002.

Waldemar KocjarDynamic scheduling: State of the art repdréchnical
Report T2002:28, SICS, 2002.

T. Muller and R. Bartakinteractive Timetablingln Proceedings of the
ERCIM Workshop on Constraints, Prague, June 2001

Tomas Miller and Roman Bartakateractive Timetabling: Concepts,
Techniques, and Practical Resultsi Burke, Edmund; Causmaecker,
Patrick De (eds.): Proceedings of the 4th Inteomati Conference on the
Practice and Theory of Automated Timetabling (PARAT2), Gent,
2002, pp. 58-72.

T. Miller, R. Bartdk, H. Rudovdterative Forward Search: Combining
Local Search with Maintaining Arc Consistency andCanflict-based
Statistics. In LSCS'04 - International Workshop on Local Skarc
Techniques in Constraint Satisfaction, 2004.

Zbigniew Michalewicz and David B. Fogdflow to Solve It: Modern
Heuristics.Springer, 2000.

Steven Minton, Mark D. Johnston, Andrew Bilip$y and Philip Laird.
Minimizing conflicts: a heuristic repair method foonstraint satisfaction
and scheduling problemaAurtificial Intelligence, 58:161-205, 1992.

TomaS Miuller and Hana Rudov&linimal Perturbation Problem in

Course Timetabling.In PATAT 2004 - Proceedings of the 5th
international conference on the Practice And TheofyAutomated

Timetabling, pages 283-303, 2004.

T. Muller, H. Rudova, R. BartdMinimal Perturbation Problem in
Course TimetablingPractice And Theory of Automated Timetabling,
Selected Revised Papers, 2005. To appear.

T. Mdller. Interactive TimetablingMaster Thesis, KTIML MFF UK,
Prague, September 2001

T. Mdiller. Interactive Heuristic Search Algorithnm Proceedings of the
CP'02 Conference - Doctoral Programme, Ithaca, edaper 2002.
Springer-Verlag LNCS 2470, pp. 765, 2002.

Sylvain Piechowiak, Jingxua Ma, and René MamdEDT-2004: An
open interactive timetabling tooln Edmund K. Burke and Michael
Trick, editors, PATAT 2004 - Proceedings of the Stiiernational
Conference on the Practice and Theory of Automatettabling, pages
305-321, 2004.

Hana Rudové and Keith Murrayniversity course timetabling with soft
constraints. In Edmund Burke and Patrick De Causmaecker, edlitor
Practice And Theory of Automated Timetabling, SedddRevised Papers,
pages 310-328. Springer-Verlag LNCS 2740, 2003.

-22 -

RRHO02

Sch97

SWO00

Tsa93
VJo3

Wren96

Yongping Ran, Nico Roos, and Jaap van deikH&pproaches to find a
nearminimal change solution for dynamic CSPsFourth International
Workshop on Integration of Al and OR techniques Qonstraint

Programming for Combinatorial Optimisation Problempages 373-387,
2002.

Andrea Schaerombining local search and look-ahead for schedulin
and constraint satisfaction problenis. Proceedings of 15th International
Joint Conference on Atrtificial Intelligence (IJCAF), pages 1254-1259,
Nagoya, Japan, 1997.

Hani El Sakkout, Mark Wallac&€robe backtrack search for minimal
perturbation in dynamic schedulingcONSTRAINTS, 4(5):359-388,
2000.

E. Tsand=oundations of Constraint Satisfactiohcademic Press, 1993.

Gérard Verfaillie and Narendra Jussi®@ynamic constraint solving,
2003.A tutorial including commented bibliography pretwahat CP 2003.
See http://www.emn.fr/x-info/jussien/CPO3tutorial/.

A. Wren. Scheduling, Timetabling and Rostering — A Special
Relationship?n the Practice and Theory of Automated Timetajlied.
E.K. Burke and P. Ross, pp. 46-75, Springer-Verl&§6.

-23-

