001package org.cpsolver.exam.heuristics;
002
003import java.util.ArrayList;
004import java.util.HashSet;
005import java.util.List;
006import java.util.Set;
007import java.util.TreeSet;
008
009
010import org.apache.logging.log4j.Logger;
011import org.cpsolver.exam.model.Exam;
012import org.cpsolver.exam.model.ExamModel;
013import org.cpsolver.exam.model.ExamPeriodPlacement;
014import org.cpsolver.exam.model.ExamPlacement;
015import org.cpsolver.exam.model.ExamRoomPlacement;
016import org.cpsolver.ifs.assignment.Assignment;
017import org.cpsolver.ifs.assignment.context.AssignmentContext;
018import org.cpsolver.ifs.assignment.context.NeighbourSelectionWithContext;
019import org.cpsolver.ifs.extension.ConflictStatistics;
020import org.cpsolver.ifs.extension.Extension;
021import org.cpsolver.ifs.heuristics.NeighbourSelection;
022import org.cpsolver.ifs.heuristics.ValueSelection;
023import org.cpsolver.ifs.model.Model;
024import org.cpsolver.ifs.model.Neighbour;
025import org.cpsolver.ifs.model.SimpleNeighbour;
026import org.cpsolver.ifs.model.Value;
027import org.cpsolver.ifs.solution.Solution;
028import org.cpsolver.ifs.solver.Solver;
029import org.cpsolver.ifs.util.DataProperties;
030import org.cpsolver.ifs.util.ToolBox;
031
032/**
033 * Tabu search algorithm. <br>
034 * <br>
035 * If used as {@link NeighbourSelection}, the most improving (re)assignment of a
036 * value to a variable is returned (all variables and all their values are
037 * enumerated). If there are more than one of such assignments, one is selected
038 * randomly. A returned assignment can cause unassignment of other existing
039 * assignments. The search is stopped (
040 * {@link ExamTabuSearch#selectNeighbour(Solution)} returns null) after
041 * TabuSearch.MaxIdle idle (not improving) iterations. <br>
042 * <br>
043 * If used as {@link ValueSelection}, the most improving (re)assignment of a
044 * value to a given variable is returned (all values of the given variable are
045 * enumerated). If there are more than one of such assignments, one is selected
046 * randomly. A returned assignment can cause unassignment of other existing
047 * assignments. <br>
048 * <br>
049 * To avoid cycling, a tabu is maintainded during the search. It is the list of
050 * the last n selected values. A selection of a value that is present in the
051 * tabu list is only allowed when it improves the best ever found solution. <br>
052 * <br>
053 * The minimum size of the tabu list is TabuSearch.MinSize, maximum size is
054 * TabuSearch.MaxSize (tabu list is not used when both sizes are zero). The
055 * current size of the tabu list starts at MinSize (and is reset to MinSize
056 * every time a new best solution is found), it is increased by one up to the
057 * MaxSize after TabuSearch.MaxIdle / (MaxSize - MinSize) non-improving
058 * iterations. <br>
059 * <br>
060 * Conflict-based Statistics {@link ConflictStatistics} (CBS) can be used
061 * instead of (or together with) tabu list, when CBS is used as a solver
062 * extension.
063 * 
064 * @author  Tomáš Müller
065 * @version ExamTT 1.3 (Examination Timetabling)<br>
066 *          Copyright (C) 2008 - 2014 Tomáš Müller<br>
067 *          <a href="mailto:muller@unitime.org">muller@unitime.org</a><br>
068 *          <a href="http://muller.unitime.org">http://muller.unitime.org</a><br>
069 * <br>
070 *          This library is free software; you can redistribute it and/or modify
071 *          it under the terms of the GNU Lesser General Public License as
072 *          published by the Free Software Foundation; either version 3 of the
073 *          License, or (at your option) any later version. <br>
074 * <br>
075 *          This library is distributed in the hope that it will be useful, but
076 *          WITHOUT ANY WARRANTY; without even the implied warranty of
077 *          MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
078 *          Lesser General Public License for more details. <br>
079 * <br>
080 *          You should have received a copy of the GNU Lesser General Public
081 *          License along with this library; if not see
082 *          <a href='http://www.gnu.org/licenses/'>http://www.gnu.org/licenses/</a>.
083 */
084public class ExamTabuSearch extends NeighbourSelectionWithContext<Exam, ExamPlacement, ExamTabuSearch.TabuList> implements ValueSelection<Exam, ExamPlacement> {
085    private static Logger sLog = org.apache.logging.log4j.LogManager.getLogger(ExamTabuSearch.class);
086    private ConflictStatistics<Exam, ExamPlacement> iStat = null;
087
088    private long iFirstIteration = -1;
089    private long iMaxIdleIterations = 10000;
090
091    private int iTabuMinSize = 0;
092    private int iTabuMaxSize = 0;
093
094    private double iConflictWeight = 1000000;
095    private double iValueWeight = 1;
096
097    /**
098     * <ul>
099     * <li>TabuSearch.MaxIdle ... maximum number of idle iterations (default is
100     * 10000)
101     * <li>TabuSearch.MinSize ... minimum size of the tabu list
102     * <li>TabuSearch.MaxSize ... maximum size of the tabu list
103     * <li>Value.ValueWeight ... weight of a value (i.e.,
104     * {@link Value#toDouble(Assignment)})
105     * <li>Value.ConflictWeight ... weight of a conflicting value (see
106     * {@link Model#conflictValues(Assignment, Value)}), it is also weighted by the past
107     * occurrences when conflict-based statistics is used
108     * </ul>
109     * @param properties solver configuration
110     * @throws Exception thrown when the initialization fails
111     */
112    public ExamTabuSearch(DataProperties properties) throws Exception {
113        iTabuMinSize = properties.getPropertyInt("TabuSearch.MinSize", iTabuMinSize);
114        iTabuMaxSize = properties.getPropertyInt("TabuSearch.MaxSize", iTabuMaxSize);
115        iMaxIdleIterations = properties.getPropertyLong("TabuSearch.MaxIdle", iMaxIdleIterations);
116        iConflictWeight = properties.getPropertyDouble("Value.ConflictWeight", iConflictWeight);
117        iValueWeight = properties.getPropertyDouble("Value.ValueWeight", iValueWeight);
118    }
119
120    /** Initialization */
121    @Override
122    public void init(Solver<Exam, ExamPlacement> solver) {
123        super.init(solver);
124        for (Extension<Exam, ExamPlacement> extension : solver.getExtensions()) {
125            if (ConflictStatistics.class.isInstance(extension))
126                iStat = (ConflictStatistics<Exam, ExamPlacement>) extension;
127        }
128    }
129
130    /**
131     * Neighbor selection
132     */
133    @Override
134    public Neighbour<Exam, ExamPlacement> selectNeighbour(Solution<Exam, ExamPlacement> solution) {
135        if (iFirstIteration < 0)
136            iFirstIteration = solution.getIteration();
137        TabuList tabu = getContext(solution.getAssignment());
138        long idle = solution.getIteration() - Math.max(iFirstIteration, solution.getBestIteration());
139        if (idle > iMaxIdleIterations) {
140            sLog.debug("  [tabu]    max idle iterations reached");
141            iFirstIteration = -1;
142            if (tabu.size() > 0)
143                tabu.clear();
144            return null;
145        }
146        if (tabu.size() > 0 && iTabuMaxSize > iTabuMinSize) {
147            if (idle == 0) {
148                tabu.resize(iTabuMinSize);
149            } else if (idle % (iMaxIdleIterations / (iTabuMaxSize - iTabuMinSize)) == 0) {
150                tabu.resize(Math.min(iTabuMaxSize, tabu.size() + 1));
151            }
152        }
153
154        boolean acceptConflicts = solution.getModel().getBestUnassignedVariables() > 0;
155        ExamModel model = (ExamModel) solution.getModel();
156        Assignment<Exam, ExamPlacement> assignment = solution.getAssignment();
157        double bestEval = 0.0;
158        List<ExamPlacement> best = null;
159        for (Exam exam : model.variables()) {
160            ExamPlacement assigned = assignment.getValue(exam);
161            double assignedVal = (assigned == null ? iConflictWeight : iValueWeight * assigned.toDouble(assignment));
162            for (ExamPeriodPlacement period : exam.getPeriodPlacements()) {
163                Set<ExamRoomPlacement> rooms = exam.findBestAvailableRooms(assignment, period);
164                if (rooms == null)
165                    rooms = exam.findRoomsRandom(assignment, period, false);
166                if (rooms == null)
167                    continue;
168                ExamPlacement value = new ExamPlacement(exam, period, rooms);
169                if (value.equals(assigned))
170                    continue;
171                double eval = iValueWeight * value.toDouble(assignment) - assignedVal;
172                if (acceptConflicts) {
173                    Set<ExamPlacement> conflicts = model.conflictValues(assignment, value);
174                    for (ExamPlacement conflict : conflicts) {
175                        eval -= iValueWeight * conflict.toDouble(assignment);
176                        eval += iConflictWeight
177                                * (1.0 + (iStat == null ? 0.0 : iStat.countRemovals(solution.getIteration(), conflict,
178                                        value)));
179                    }
180                } else {
181                    if (model.inConflict(assignment, value))
182                        continue;
183                }
184                if (tabu.size() > 0 && tabu.contains(exam.getId() + ":" + value.getPeriod().getIndex())) {
185                    int un = model.variables().size() - assignment.nrAssignedVariables() - (assigned == null ? 0 : 1);
186                    if (un > model.getBestUnassignedVariables())
187                        continue;
188                    if (un == model.getBestUnassignedVariables()
189                            && model.getTotalValue(assignment) + eval >= solution.getBestValue())
190                        continue;
191                }
192                if (best == null || bestEval > eval) {
193                    if (best == null)
194                        best = new ArrayList<ExamPlacement>();
195                    else
196                        best.clear();
197                    best.add(value);
198                    bestEval = eval;
199                } else if (bestEval == eval) {
200                    best.add(value);
201                }
202            }
203        }
204
205        if (best == null) {
206            sLog.debug("  [tabu] --none--");
207            iFirstIteration = -1;
208            if (tabu.size() > 0)
209                tabu.clear();
210            return null;
211        }
212        ExamPlacement bestVal = ToolBox.random(best);
213
214        if (sLog.isDebugEnabled()) {
215            Set<ExamPlacement> conflicts = model.conflictValues(assignment, bestVal);
216            double wconf = (iStat == null ? 0.0 : iStat.countRemovals(solution.getIteration(), conflicts, bestVal));
217            sLog.debug("  [tabu] " + bestVal + " ("
218                    + (assignment.getValue(bestVal.variable()) == null ? "" : "was=" + assignment.getValue(bestVal.variable()) + ", ") + "val=" + bestEval
219                    + (conflicts.isEmpty() ? "" : ", conf=" + (wconf + conflicts.size()) + "/" + conflicts) + ")");
220        }
221
222        if (tabu.size() > 0)
223            tabu.add(bestVal.variable().getId() + ":" + bestVal.getPeriod().getIndex());
224
225        return new SimpleNeighbour<Exam, ExamPlacement>(bestVal.variable(), bestVal);
226    }
227
228    /**
229     * Value selection
230     */
231    @Override
232    public ExamPlacement selectValue(Solution<Exam, ExamPlacement> solution, Exam exam) {
233        if (iFirstIteration < 0)
234            iFirstIteration = solution.getIteration();
235        TabuList tabu = getContext(solution.getAssignment());
236        long idle = solution.getIteration() - Math.max(iFirstIteration, solution.getBestIteration());
237        if (idle > iMaxIdleIterations) {
238            sLog.debug("  [tabu]    max idle iterations reached");
239            iFirstIteration = -1;
240            if (tabu.size() > 0)
241                tabu.clear();
242            return null;
243        }
244        if (tabu.size() > 0 && iTabuMaxSize > iTabuMinSize) {
245            if (idle == 0) {
246                tabu.resize(iTabuMinSize);
247            } else if (idle % (iMaxIdleIterations / (iTabuMaxSize - iTabuMinSize)) == 0) {
248                tabu.resize(Math.min(iTabuMaxSize, tabu.size() + 1));
249            }
250        }
251
252        ExamModel model = (ExamModel) solution.getModel();
253        Assignment<Exam, ExamPlacement> assignment = solution.getAssignment();
254        double bestEval = 0.0;
255        List<ExamPlacement> best = null;
256
257        ExamPlacement assigned = assignment.getValue(exam);
258        // double assignedVal =
259        // (assigned==null?-iConflictWeight:iValueWeight*assigned.toDouble());
260        double assignedVal = (assigned == null ? iConflictWeight : iValueWeight * assigned.toDouble(assignment));
261        for (ExamPeriodPlacement period : exam.getPeriodPlacements()) {
262            Set<ExamRoomPlacement> rooms = exam.findBestAvailableRooms(assignment, period);
263            if (rooms == null)
264                rooms = exam.findRoomsRandom(assignment, period, false);
265            if (rooms == null) {
266                sLog.info("Exam " + exam.getName() + " has no rooms for period " + period);
267                continue;
268            }
269            ExamPlacement value = new ExamPlacement(exam, period, rooms);
270            if (value.equals(assigned))
271                continue;
272            Set<ExamPlacement> conflicts = model.conflictValues(assignment, value);
273            double eval = iValueWeight * value.toDouble(assignment) - assignedVal;
274            for (ExamPlacement conflict : conflicts) {
275                eval -= iValueWeight * conflict.toDouble(assignment);
276                eval += iConflictWeight
277                        * (1.0 + (iStat == null ? 0.0 : iStat.countRemovals(solution.getIteration(), conflict, value)));
278            }
279            if (tabu.size() > 0 && tabu.contains(exam.getId() + ":" + value.getPeriod().getIndex())) {
280                int un = model.variables().size() - assignment.nrAssignedVariables() - (assigned == null ? 0 : 1);
281                if (un > model.getBestUnassignedVariables())
282                    continue;
283                if (un == model.getBestUnassignedVariables() && model.getTotalValue(assignment) + eval >= solution.getBestValue())
284                    continue;
285            }
286            if (best == null || bestEval > eval) {
287                if (best == null)
288                    best = new ArrayList<ExamPlacement>();
289                else
290                    best.clear();
291                best.add(value);
292                bestEval = eval;
293            } else if (bestEval == eval) {
294                best.add(value);
295            }
296        }
297
298        if (best == null)
299            return null;
300        ExamPlacement bestVal = ToolBox.random(best);
301
302        if (sLog.isDebugEnabled()) {
303            Set<ExamPlacement> conflicts = model.conflictValues(assignment, bestVal);
304            double wconf = (iStat == null ? 0.0 : iStat.countRemovals(solution.getIteration(), conflicts, bestVal));
305            sLog.debug("  [tabu] " + bestVal + " ("
306                    + (assignment.getValue(bestVal.variable()) == null ? "" : "was=" + assignment.getValue(bestVal.variable()) + ", ") + "val=" + bestEval
307                    + (conflicts.isEmpty() ? "" : ", conf=" + (wconf + conflicts.size()) + "/" + conflicts) + ")");
308        }
309
310        if (tabu.size() > 0)
311            tabu.add(exam.getId() + ":" + bestVal.getPeriod().getIndex());
312
313        return bestVal;
314    }
315
316    /** Tabu-list */
317    public static class TabuList implements AssignmentContext {
318        private HashSet<TabuItem> iList = new HashSet<TabuItem>();
319        private int iSize;
320        private long iIteration = 0;
321
322        public TabuList(int size) {
323            iSize = size;
324        }
325
326        public Object add(Object object) {
327            if (iSize == 0)
328                return object;
329            if (contains(object)) {
330                iList.remove(new TabuItem(object, 0));
331                iList.add(new TabuItem(object, iIteration++));
332                return null;
333            } else {
334                Object oldest = null;
335                if (iList.size() >= iSize)
336                    oldest = removeOldest();
337                iList.add(new TabuItem(object, iIteration++));
338                return oldest;
339            }
340        }
341
342        public void resize(int newSize) {
343            iSize = newSize;
344            while (iList.size() > newSize)
345                removeOldest();
346        }
347
348        public boolean contains(Object object) {
349            return iList.contains(new TabuItem(object, 0));
350        }
351
352        public void clear() {
353            iList.clear();
354        }
355
356        public int size() {
357            return iSize;
358        }
359
360        public Object removeOldest() {
361            TabuItem oldest = null;
362            for (TabuItem element : iList) {
363                if (oldest == null || oldest.getIteration() > element.getIteration())
364                    oldest = element;
365            }
366            if (oldest == null)
367                return null;
368            iList.remove(oldest);
369            return oldest.getObject();
370        }
371
372        @Override
373        public String toString() {
374            return new TreeSet<TabuItem>(iList).toString();
375        }
376    }
377
378    /** Tabu item (an item in {@link TabuList}) */
379    private static class TabuItem implements Comparable<TabuItem> {
380        private Object iObject;
381        private long iIteration;
382
383        public TabuItem(Object object, long iteration) {
384            iObject = object;
385            iIteration = iteration;
386        }
387
388        public Object getObject() {
389            return iObject;
390        }
391
392        public long getIteration() {
393            return iIteration;
394        }
395
396        @Override
397        public boolean equals(Object object) {
398            if (object == null || !(object instanceof TabuItem))
399                return false;
400            return getObject().equals(((TabuItem) object).getObject());
401        }
402
403        @Override
404        public int hashCode() {
405            return getObject().hashCode();
406        }
407
408        @Override
409        public int compareTo(TabuItem o) {
410            return Double.compare(getIteration(), o.getIteration());
411        }
412
413        @Override
414        public String toString() {
415            return getObject().toString();
416        }
417    }
418
419    @Override
420    public TabuList createAssignmentContext(Assignment<Exam, ExamPlacement> assignment) {
421        return new TabuList(iTabuMinSize);
422    }
423}