
Soft CLP(FD)

Hana Rudová
Faculty of Informatics, Masaryk University

Botanicḱa 68a
Brno 602 00, Czech Republic

hanka@fi.muni.cz

Abstract

Over-constrained problems can be solved with the help of soft
constraints. Weighted constraints are a typical representation
of soft constraints used to minimize weights of unsatisfied
constraints. A natural extension of the CLP(FD) approach is
presented which allows handling of weighted soft constraints.
To achieve this goal, the costs associated with unsatisfied
constraints is accumulated for each problem variable and its
value. For the approach proposed, implementation of the soft
constraint solver on top of the existing CLP(FD) library of
SICStus Prolog is described. A large scale timetabling imple-
mentation demonstrates practical application of the approach
presented.

Introduction
Various approaches have been proposed to find solutions
of problems with uncertainties, ill-defined problems, opti-
mization problems, and over-constrained problems where
some kind of softness is needed to obtain a feasible so-
lution. The simplest framework, the maximal constraint
satisfaction (MAX-CSP) (Freuder & Wallace 1992), seeks
a solution that satisfies as many constraints as possible.
Weighted CSP considers weights for each constraint and
minimizes the weighted sum of unsatisfied constraints.
Fuzzy CSP (Dubois, Fargier, & Prade 1996) combines pref-
erence degrees with the help of fuzzy sets and possibility
theory. Valued CSP (Schiex, Fargier, & Verfaillie 1995)
and Semiring-based CSP (Bistarelli, Montanari, & Rossi
1997) represent meta-frameworks defining monoid and lat-
tice structures, which specify type of used preferences and
manipulations with them.

A variety of solving algorithms have also been studied.
Extensions of the branch &bound algorithm are often ap-
plied for weighted CSP. They can be aimed at improve-
ments to the cost from the local (e.g., partial forward check-
ing (Freuder & Wallace 1992), reversible directed arc con-
sistency (Larrosa & Meseguer 1996; Larossa, Meseguer,
& Schiex 1999)) or global point of view (Russian Doll
search (Verfaillie, Lemâıtre, & Schiex 1996)). These ap-
proaches for binary constraints have also been extended
to non-binary constraints (Meseguer, Larrosa, & Sánchez

Copyright c© 2003, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

2001). Another class of algorithms is introduced by local
search methods, e.g., tabu search (Galinier & Hao 1997).
Soft constraint propagation has also been studied for general
problem instances, representatives are fuzzy CSP (Bistarelli,
Gennari, & Rossi 2000) and weighted CSP (Schiex 2000).

A great deal of effort has been devoted to the development
of various frameworks for soft constraints. However, there
are still few tools available for soft constraint solving. To
this author’s knowledge, no library can be used together with
an existing CLP(FD) solver (Carlsson, Ottosson, & Carlson
1997; IC- 2002). Our aim is to propose a natural extension of
the CLP(FD) approach to tackle weighted soft constraints.
Based on this proposal, we have implemented a new solver
built on top of the existing CLP(FD) library of SICStus Pro-
log (Carlsson, Ottosson, & Carlson 1997). An advantage of
this approach is the ability to include both hard constraints
from the CLP(FD) library and soft constraints from a new
soft constraint solver. We will also give a brief description
of a large scale timetabling problem from Purdue University
which was solved with the help of this solver.

This paper will first describe the general method by which
the CLP(FD) program can be extended to handle soft con-
straints. The next two sections define our extension of the
domain variables and propose how the soft constraint prop-
agation can be processed. Optimization criteria for soft con-
straints is specified in the next section, followed by a de-
scription of the search methods applied in our approach. The
soft constraint solver implemented is then introduced, and
the solution of a real-life timetabling problem by our solver
is described in the section on Application. Other tools for
soft constraints are noted in Related Works. The final sec-
tion summarizes our work and looks to future extensions of
the soft constraint solver proposed.

Soft CLP(FD) Program
We would like to extend the structure of the CLP(FD) pro-
gram to handle soft constraints. The typical CLP(FD) pro-
gram consists of the three steps:
1. declare the domains of the variables

2. post the (hard) constraints

3. look for a feasible (or an optimal) solution
We propose a new general solving method for soft con-
straints which includes, beside optimization, one additional

step.

solve(Variables) :−
declare-variables(Variables, CostVariables),
post-soft-constraints(Variables),
post-hard-constraints(Variables),
minimize(Variables, sum(CostVariables)).

The traditional CLP optimization code was extended by
a declarative statement for the soft constraints which occur
in the problem. Soft constraints are defined over the prob-
lem variables in a manner similar to the hard constraints. All
soft constraints must be stated before any hard constraint is
activated though. This ordering is meaningful because the
hard constraints may cause a violation of some soft con-
straint which would not be captured otherwise.

Each problem variable is associated with one cost vari-
able. Cost variables reflect information about the accumu-
lated costs of unsatisfied soft constraints. The proposed cost
variable can be understood as the degree of satisfaction of
soft constraints related to the given variable.

The overall cost for failure to satisfy soft constraints can
be easily defined as the sum of all cost variables. Finally,
the classical CLP(FD) optimization can be processed by the
minimize procedure. Its aim is to find an assignment of the
problem variables such that the criterionsum(CostVariables)
is minimized.

Let us emphasize that the described structure is very dif-
ferent from a typical approach for solving soft constraints
in the CLP(FD) environment. Here avariable is associated
with each “soft constraint”and its value defines the degree
of satisfaction of this constraint. Optimization is processed
as a minimization of sum of these variables. In contrast, we
associate a (cost) variable with each domain variable. Even
more, we do not bind any additional variable with a soft
constraint. The most important is that the classical approach
has a poor propagation to improve optimization process and
it is not feasible for most applications. Our aim is to propose
a method which would allow inclusion of additional propa-
gation algorithms and improve efficiency of optimization.

Preference Variables
Each problem variable that occurs in any soft constraint is
apreference variable. The values of the preference variables
are associated with acost. The smaller the cost is, the highly
preferred preferred the corresponding value is.

The initial cost of all values can be set by an unary soft
constraintpref used to initialize all preference variables.

The unary soft constraintpref(PA, [7-5, 8-0, 10-0]) cre-
ates the preference variablePA with initial domain con-
taining values7, 8, and10 and costs5, 0, and0, resp. It
means that the value7 is discouraged wrt. other values.

Zero cost means complete satisfaction of the constraint
for the corresponding value in the domain of the preference
variable. Any higher cost expresses a degree of violation
that would result from the assignment of this value to the
variable. All values which are not present in the domain of
the preference variable have infinite cost.

Let us note that the preference variable may not be han-
dled as a domain variable only. The domain variable do not
have any mechanism for inclusion of the cost for each value.

Soft Constraint Propagation
During computation with soft constraints, the cost associ-
ated with a value can be increased. Increasing any cost is
called asoft constraint propagation. If it is detected that
a soft constraint is inconsistent with a value of the prefer-
ence variable, the soft constraint propagation is processed.
Thecurrent costof the value indicates the degree to which
any soft constraint dependent on this value is currently vio-
lated.

Thesoft-different(P1, P2, Weight) constraint expresses
that the two preference variablesP1, P2 should have
different values. The constantWeight gives us the cost
for violation of this constraint.
If the preference variableP1 is instantiated to some
value X, the current cost for the valueX of the vari-
ableP2 is increased byWeight, i.e., the soft constraint
propagation is processed.

There are various algorithms which can be applied to
compute the current cost, including algorithms for binary
soft constraints as inconsistency counts (Freuder & Wallace
1992), directed arc consistency (Larrosa & Meseguer 1996;
Wallace 1995), reversible directed arc consistency (Larossa,
Meseguer, & Schiex 1999), or arc inconsistency counts (Af-
fane & Bennaceur 1998). There are also extensions
of these algorithms for non-binary constraints described
in (Meseguer, Larrosa, & Śanchez 2001).

All of the algorithms mentioned associate each valueX of
a variablePJ with an inconsistency counter ICXJ (Meseguer,
Larrosa, & Śanchez 2001). Definition of this inconsistency
counter allows other algorithms to be applied within our soft
constraint propagation scheme. The cost of any value for the
preference variable is related to the inconsistency counter,
i.e., the current cost directly corresponds to the value of the
inconsistency counter.

Let us give an example with the algorithm for incon-
sistency counts (Freuder & Wallace 1992) which is im-
plemented in our solver. We will consider binary soft
constraintscKJ over preference variablesPK and PJ with
a weightWKJ. Let tuples(X,Y) defineinvalid combinations
of values ofPK andPJ derived fromcKJ. Any time some
valueX is assigned to a variablePK, all inconsistency coun-
ters ICYJ (and corresponding current costs) are increased by
WKJ. This means that the current cost corresponds to the
number of inconsistencies which the valueY of PJ has with
the assignments of instantiated variables.

Note the difference with (hard) constraint propagation,
which removes values from the domain of the domain
variable during the computation of hard constraints. Soft
constraint propagation is characterized by increasing costs.
However, it may lead to a removal of values during opti-
mization (see the section Labeling and Optimization for de-
tails). This may also happen as a consequence of constraint
propagation. In this case, it reflects violation of some hard

constraint by this domain value. It is also easy to set the de-
gree of acceptable violation for any preference variable. If
the current cost associated with a value in the domain of the
preference variable exceeds this limit, it is removed from the
domain.

Cost Function
For each preference variable, the soft constraint solver main-
tains an additional domain variable (calledcost variable).
The sum of all cost variables gives the total cost of the solu-
tion (cost function). This cost function can then be applied
during labeling and optimization.

It is not possible to apply preference variable for opti-
mization directly. Thedomain of preference variable is
created from valuesand not costs. However, the summa-
rized information about the costs related with each prefer-
ence variable is stored in a cost variable, i.e., thedomain of
the cost variable consists of costs.

Bound consistency is processed for all cost variables. This
means that only changes to the lower and upper bounds are
maintained. The lower bound corresponds to the best pos-
sible satisfaction of soft constraints dependent on the cor-
responding preference variable, the upper bound is related
with their worst possible satisfaction.

A best current costof the preference variable corresponds
to the smallest current cost among all costs of its values. Soft
constraint propagation may result in an increase of the best
current cost. This change is reflected via the lower bound of
the cost variable.

The initial upper bound is set to infinity. It can be de-
creased during optimization. Computing a solution with a
defined cost allows the upper bound to be reduced to the ac-
tual cost achieved. This is a very weak method however.
Generally any method available for computation of the up-
per bound of the solution cost can be applied to improve
constraint propagation for the cost variables.

Labeling and Optimization
Labeling and optimization are processed as is usual
for hard constraints and any search method suitable for
(sub)optimization can be applied. Preference variables are
labeled as the traditional domain variables and optimiza-
tion criteria are defined as is usual through the domain vari-
ables (cost variables).

We can apply the backtracking algorithm for labeling of
the preference variables. The current cost of values for the
preference variables should be applied to compute value and
variable ordering heuristics. Variables can be ordered either
by the largest mean of the current cost in their domains or by
minimum domain size, value ordering may consider values
by increasing current cost (Freuder & Wallace 1992).

The branch and bound algorithm explores the search tree
and keeps the cost of the best solution found so far. This
cost is an upper bound of the problem solution (UB). At
each node, branch and bound estimates the global cost of
any leaf node descendant from the current node. This cost,
considered as a lower bound of the problem solution (LB),
corresponds to the best possible cost of the solution which

can be found in the current path. If LB≥ UB holds, the cur-
rent best solution can not be improved along the explored
path and the current branch can be pruned.

Quality of the LB is improved with the help of the best
current cost of the preference variable. Let us recall that
the best current cost for each preference variable is stored as
a lower bound of its cost variable, i.e., the smallest possible
sum of the cost variables corresponds to a new LB.

During optimization, the current cost of some value for
the preference variable can become higher than the UB. This
possibility leads to a removal of this value from the domain
of the preference variable.

Let us give an example of a non-classical search algo-
rithm. We have proposed an iterative repair search algorithm
based on chronological backtracking — limited assignment
number (LAN) search algorithm (Veřmiřovsḱy & Rudová
2002). Each iteration is of linear complexity because the
number of attempts to assign a value to each variable is lim-
ited. LAN search attempts to find some initial partial assign-
ment of the variables and subsequently repair it such that all,
or at least most, of the variables are assigned a value. This
is done by developing variable and value heuristics based
on the results of previous iterations. In the first iteration of
the algorithm, the variable and value ordering heuristics pro-
posed above for backtracking can be applied (called initial
heuristics). In each of the following iterations, heuristics
based on the previous iteration are used primarily. Any ties
are broken by using the initial heuristics. Initial heuristics
are aimed at improving the quality of the cost function for
soft constraints.

This algorithm can be applied for problems where it is not
easy to find a solution in a reasonable time. A complete as-
signment may not even exist due to conflicts among the hard
constraints. While contradictory sets of hard constraints are
handled by the LAN search, predefined soft constraints can
be included with the help of our approach.

Implementation
The soft constraint solver was implemented as an extension
of the CLP(FD) library of SICStus Prolog (Carlsson, Ottos-
son, & Carlson 1997).

The preference variable is implemented using the at-
tributed variable (Holzbaur 1990). The preference variable
remains a domain variable. The attribute of each preference
variable stores the cost variable and the current cost for each
value present in the domain of the domain variable. The
costs are stored in association lists (libraryassoc at SICStus
Prolog). Their implementation is done with the help of AVL
trees1. Associative lists were chosen as the most suitable
library among others available at SICStus Prolog.

The unary soft constraintpref must be called to initial-
ize any preference variable. Initial costs are created based
on the “domain value-cost” list and the input domain vari-
able. The keys of the AVL tree are the domain values and
their values are the costs. Any time some domain value of

1AVL tree is an approximately balanced tree — for every node,
the heights of its two subtrees differ by at most one. See (Wirth
1976) for algorithms.

the domain variable is deleted, the AVL tree must be up-
dated accordingly. Any time soft constraint propagation for
some domain value is processed, the corresponding cost in
the AVL tree is increased. If the best current cost for the
preference variable is increased, the lower bound of the cost
variable is increased.

The implementation of soft constraint propagation is
based on inconsistency counts (Freuder & Wallace 1992).
The pref soft constraint for initialization of the preference
variables is implemented. Other soft constraints include the
soft-different constraint (see example in the section Soft Con-
straint Propagation) and constraints for non-overlapping of
two tasks (soft version of SICStus Prologserialized con-
straint). For the labeling of preference variables, backtrack-
ing search, branch and bound, and LAN search are imple-
mented.

We can see that the two data structures must be main-
tained to store domain values (values in domain variable,
values together with costs in the AVL tree). A unique data
structure would be better for efficiency reasons. Such exten-
sion of the SICStus CLP(FD) library would not be as simple
as the method described. It would lead to extensive changes
in the internal data structures of the CLP(FD) library which
was not our aim. In addition, these changes may not be as
general as we need. It could lead to a reduced set of available
hard constraints. We would like to explore such possibility
in the future though.

Application
The soft constraint solver was originally developed to solve
the timetabling problem for Purdue University (seehttp:
//www.purdue.edu). Let us describe this application to
show that the current version of the solver is able to solve
a large scale real-life problem. A full description of the
problem together with the presented results can be found
in (Rudov́a & Murray 2002).

The timetabling problem from Purdue University consists
of timetabling (assigning time and classroom to classes) ap-
proximately 750 classes attended by 30,000 students into
41 large lecture rooms with capacities up to 474 students.
The classes are taught several times a week resulting in
1,600 meetings to be timetabled. The space covered by
all meetings fills approximately 85 % of the total available
space. Special meeting patterns defined for each class direct
possible time and location placement. Classroom allocation
must respect instructional requirements andpreferencesof
faculty. All instructors may have specific time requirements
andpreferencesfor each class. A major objective is tomini-
mize the number of potential student course conflicts.

There are two types of the preference variables — time
and classroom preference variables (about 1500 preference
variables together). Both of them have given initial costs
corresponding to preferred or discouraged times or class-
rooms. The binary soft constraints are applied to include
the requirements of students (the largest set includes about
23.000 such constraints). For each possible pair of classes,
the number of students who want to attend both is defined.
An extended version of thesoft-disjunctive constraint is im-
plemented to discourage overlaps of multi-meeting classes.

The cost of this soft constraint corresponds to the number of
students in common.

Independent optimization criteria are defined for the time
and classroom variables. The cost function is equal to the
sum of cost variables corresponding to time (classroom)
variables. It reflects satisfaction of time (classroom) require-
ments. Each cost variable has its own importance. Since
all classes should be relatively equal in importance, the cost
variables help to maintain information about the satisfaction
of the requirements for each class.

The LAN search algorithm was applied as a search proce-
dure. About ten iterations were needed to compute a com-
plete timetable.

Let us summarize achieved satisfaction of soft constraints
given in percentage. The final solution was able to sat-
isfy 97.7 % of the student requirements from course pre-
enrollment, 80.7 % of classes were assigned at the preferred
times while 4.5 % classes must be taught at discouraged
times. A secondary requirement on selection of preferred
classroom was satisfied up to 52.3 %.

Related Work
Theclp(FD,S) (Georget & Codognet 1998) is an implemen-
tation of semiring-based constraint logic programming. It
needed a new implementation and abstract machine which
results in its good efficiency. However, it inherited neither
the broad class of constraint propagation algorithms nor the
search methods from any parent CLP(FD) solver. The ex-
tensive support of other tools important for the development
of real-life applications is also missing (e.g., available from
SICStus Prolog).

A different approach was chosen for soft constraint propa-
gation with the help of Constraint Handling Rules (Bistarelli
et al. 2002). They also relay on the support of the constraint
environment for hard constraints — on CHR and on SICS-
tus Prolog programming environment. Comparison of the
generality and efficiency of both approaches is an interest-
ing issue for our future work. It seems that both approaches
should be complementary as are CLP(FD) and CHR now.

Conclusion
We have proposed a simple extension of the CLP(FD) ap-
proach which allows the handling of weighted soft con-
straints. Each problem variable was associated with an ad-
ditional domain variable reflecting violations of soft con-
straints. These variables directly define optimization cri-
terion for soft constraints. The soft constraint propaga-
tion described is based on the idea of inconsistency coun-
ters (Meseguer, Larrosa, & Sánchez 2001). It can be eas-
ily extended by any algorithm cumulating violations of soft
constraints with their help. Our approach allows inclusion of
both hard constraints from the parent CLP(FD) solver and
soft constraints from our solver. Application using back-
tracking, branch and bound, and a new LAN search algo-
rithms show how it is possible to define search methods with
the help of the parent CLP(FD) solver. Based on our pro-
posal, we have implemented a soft constraint solver on top
of the CLP(FD) library of SICStus Prolog. The solution of

a large scale timetabling application Purdue University veri-
fies validity and vitality of our proposal and implementation.

In the future, we would like to study more general prop-
erties of the algorithm which can be applied within our soft
constraint propagation scheme. We also plan to extend the
soft constraint propagation used in our problem solution
to achieve a more complete propagation for cost variables.
Comparison with other solvers could show how to extend
our proposal and implementation. A possibility to improve
cooperation with the CLP(FD) library will be explored. Ex-
tensions of the set of implemented constraints would allow
application of the solver for a broader class of problems.
Last but not least, the development of the timetabling system
continues. The main concentration is devoted to the mini-
mal perturbation problem to allow minimal changes of the
generated timetable in case of a redefinition of the original
problem.

Acknowledgements
This work is partially supported by the Grant Agency of
Czech Republic under the contract 201/01/0942 and by Pur-
due University. We would like to thank our students Vlas-
timil K řápek, Alěs Prokopec, and Kamil Veřmiřovsḱy, who
are assisting with the solution of the timetabling problem.
Our thanks also go to the Supercomputer Center Brno where
experiments with the search algorithm are conducted.

References
Affane, M. S., and Bennaceur, H. 1998. A weighted arc
consistency technique for MAX-CSP. In Prade, H., ed.,
Proceedings of the 13th European Conference on Artificial
Intelligence (ECAI-98), 209–213. John Wiley & Sons.
Bistarelli, S.; Fr̈uhwirth, T.; Martel, M.; and Rossi, F. 2002.
Soft constraint propagation and solving in constraint han-
dling rules. InProceedings of the ACM Symposium on Ap-
plied Computing.
Bistarelli, S.; Gennari, R.; and Rossi, F. 2000. Con-
straint propagation for soft constraint satisfaction prob-
lems: Generalization and termination conditions. InPrin-
ciples and Practice of Constraint Programming — CP’00,
83–97. Springer-Verlag LNCS 1894.
Bistarelli, S.; Montanari, U.; and Rossi, F. 1997. Semiring-
based constraint solving and optimization.Journal of ACM
44(2):201–236.
Carlsson, M.; Ottosson, G.; and Carlson, B. 1997.
An open-ended finite domain constraint solver. InPro-
gramming Languages: Implementations, Logics, and Pro-
gramming. Springer-Verlag LNCS 1292.
Dubois, D.; Fargier, H.; and Prade, H. 1996. Possibility
theory in constraint satisfaction problems: Handling prior-
ity, preference and uncertainty.Applied Intelligence6:287–
309.
Freuder, E. C., and Wallace, R. J. 1992. Partial constraint
satisfaction.Artificial Intelligence58:21–70.
Galinier, P., and Hao, J.-K. 1997. Tabu search for maximal
constraint satisfaction problems. In Smolka, G., ed.,Pro-
ceedings Third International Conference on Principles and

Practice of Constraint Programming, 196–208. Springer-
Verlag LNCS 1330.
Georget, Y., and Codognet, P. 1998. Compiling Semiring-
based constraints withclp(FD, S) . In Maher, M., and
Puget, J.-F., eds.,Principles and Practice of Constraint
Programming — CP98, 205–219. Springer-Verlag LNCS
1520.
Holzbaur, C. 1990.Specification of Constraint Based In-
ference Mechanism through Extended Unification. Ph.D.
Dissertation, University of Vienna.
IC-Park. 2002. ECLiPSe Constraint Library Man-
ual, Release 5.5. http://www.icparc.ic.ac.uk/
eclipse .
Larossa, J.; Meseguer, P.; and Schiex, T. 1999. Maintain-
ing reversible DAC for MAX-CSP.Artificial Intelligence
107(1):149–163.
Larrosa, J., and Meseguer, P. 1996. Exploiting the use of
DAC in MAX-CSP. In Freuder, E. C., ed.,Principles and
Practice of Constraint Programming – CP96, volume 1118
of Lecture Notes in Computer Science, 308–322. Springer.
Meseguer, P.; Larrosa, J.; and Sánchez, M. 2001. Lower
bounds for non-binary constraint optimization problems. In
Walsh, T., ed.,Principles and Practice of Constraint Pro-
gramming – CP 2001, volume 2239 ofLecture Notes in
Computer Science, 317–331. Springer.
Rudov́a, H., and Murray, K. 2002. University course
timetabling with soft constraints. In Burke, E., and Caus-
maecker, P. D., eds.,PATAT 2002 — Proceedings of the 4th
international conference on the Practice And Theory of Au-
tomated Timetabling, 73–89.
Schiex, T.; Fargier, H.; and Verfaillie, G. 1995. Valued con-
straint satisfaction problems: Hard and easy problems. In
Mellish, C. S., ed.,Proceedings of the Fourteenth Interna-
tional Joint Conference on Artificial Intelligence, 631–639.
San Mateo: Morgan Kaufmann.
Schiex, T. 2000. Arc consistency for soft constraints.
In Principles and Practice of Constraint Programming —
CP’00, 411–424. Springer-Verlag LNCS 1894.
Verfaillie, G.; Lemâıtre, M.; and Schiex, T. 1996. Russian
doll search for solving constraint optimization problems.
In Proceedings of the Thirteenth National Conference on
Artificial Intelligence (AAAI-96) and Eighth Conference on
Innovative Applications of Artificial Intelligence (IAAI-96),
181–187.
Veřmiřovsḱy, K., and Rudov́a, H. 2002. Limited assign-
ment number search algorithm. InStudent Research Forum
of the 29th Annual Conference on Current Trends in Theory
and Practice of Informatics (SOFSEM’2002). Seehttp:
//www.fi.muni.cz/˜hanka/publications .
Wallace, R. J. 1995. Directed Arc Consistency Prepro-
cessing. In Meyer, M., ed.,Constraint Processing, Selected
Papers, volume 923 ofLecture Notes in Computer Science.
Springer-Verlag. 121–137.
Wirth, N. 1976.Algorithms + Data Structures = Programs.
Prentice-Hall.

