
University Course Timetabling & Student Sectioning System

Tomáš Müller, Keith Murray, Stephanie Schluttenhofer
muller@unitime.org, kmurray@unitime.org, says@unitime.org

Space Management and Academic Scheduling, Purdue University
400 Centennial Mall Drive, West Lafayette, IN 47907-2016, USA

Abstract

An enterprise system for automated construction of
course timetables and student schedules is presented
and discussed. This is a distributed system that allows
multiple university and departmental schedule man-
agers to coordinate efforts to build and modify a course
schedule that meets their diverse organizational needs
while allowing for minimization of student course con-
flicts. Creation and modification of individual student
schedules is also addressed.

Although the university course timetabling problem has re-
ceived considerable attention, and many potentially use-
ful solution approaches have been proposed, there have
been relatively few successful applications to actual uni-
versity problems of a large scale (Carter & Laporte 1998;
Petrovic & Burke 2004; McCollum 2006). One such system
that has recently been successfully implemented is discussed
here, along with proposed approaches for sectioning individ-
ual students. The initial creation of a timetable and student
schedules are addressed, along with interactive changes to
each.

The system described here was developed to create and
modify course timetables that better meet student course de-
mand and allow students to be assigned to the constituent
course sections in a way that minimizes conflicts (Murray,
Müller, & Rudová 2007). The initial implementation has
been at Purdue University, which is a large public university
(39,000 students) with a broad spectrum of programs at the
undergraduate and graduate levels. In a typical term there
are 9,000 classes offered using 570 teaching spaces. Ap-
proximately 259,000 individual student class requests must
be satisfied.

The complete university timetabling problem is decom-
posed into a series of subproblems to be solved at the aca-
demic department level. Several other special problems,
where shared resources or student interactions are of criti-
cal importance, are solved institution wide. A major consid-
eration in designing the system has been how to best sup-
port this distributed construction of departmental timetables
while providing central coordination of the overall problem.

In the course of developing a system that is useable in
practice, it was necessary to confront a number of issues
not typically addressed in the literature on timetabling, but

which are critical to successful implementation. These in-
cluded modeling the structure of all courses, issues of the
“fairness” of a solution across all departments with classes
being timetabled, the ease of introducing changes after a so-
lution has been generated, and the ability to check and re-
solve inconsistencies in input data.

System Architecture
The system has been designed with a completely web-based
interface using the Enterprise Edition of Java (J2EE). Hi-
bernate is used to persist data in an SQL-enabled relational
database (e.g., MySQL or Oracle). The system architec-
ture consists of an enterprise web-based application and a
constraint solver engine (see Fig. 1). The Web Server con-
tains the necessary persistence, business and presentation
logic, including XML interfaces for communication with
other systems. Course timetabling and student sectioning
problems are solved by the Solver Server. Since timetabling
is done at the departmental level (each department builds its
own timetable), the Solver Server needs to be able to work
with multiple problem instances at the same time. Also,
if needed, the load can be spread between multiple Solver
Servers. Each problem is modeled as a constraint satisfac-
tion and optimization problem (CSOP) and solved using the
iterative forward search algorithm (Müller 2005). This func-
tionality is provided by the Constraint Solver library.

The course timetabling portion of the application has been
used university-wide at Purdue since January 2007. The
solver has been used for several sub-problems beginning in
2005. Student sectioning is currently under development.
Exam scheduling and event management capabilities are
planned for inclusion in the future.

The presented application is publicly available under an
Open Source license1, and it can be downloaded from the
UniTime web site http://www.unitime.org. This
site also contains information about ongoing research, on-
line documentation for the described system, and various
real-life benchmark data sets for course timetabling and stu-
dent sectioning problems.

1Constraint-based solver, including course timetabling and stu-
dent sectioning extensions is available under GNU Lesser General
Public License (LGPL), the complete timetabling application is
available under GNU General Public License (GPL).



Figure 1: System architecture

User Interface
A major requirement for making the system usable across
a university is the ability to represent the wide variety of
course structures and conveniently manage data on all the
classes to be timetabled. To achieve this, a course model was
developed that allows the structure of all instructional offer-
ings, including relationships between lectures, labs, etc. to
be reflected in the database as individual classes and a se-
ries of constraints between them. The ability to work with
an interface that recognizes the structure of each course is
particularly valuable for departments with many classes of
the same offering. The structure can then be used to set con-
straints on large numbers of related classes (see Fig. 2).

Figure 2: Instructional offering input

Another important aspect of this application is the sup-
port for distributed responsibilities over the timetabling pro-
cess. Being able to individually timetable each department
is required because departmental timetablers have a intimate

knowledge of the needs of the courses offered, the faculty
who might be able to teach a particular class, and the spaces
available for specialized instructions. Maintaining each de-
partment’s sense of ownership in the timetables that are pro-
duced is also an important factor in their acceptance of the
solutions produced by an automated timetabling process.

The user interface for the solver is another very impor-
tant part of the application. A user is able to produce and
store as many timetables as desired; however, only one so-
lution can be committed for each problem. The application
also provides many tools for evaluating a timetable, compare
two timetables, finding inconsistencies or potential prob-
lems in the input data, and to make manual changes to a
timetable. Figure 3 illustrates the display of a timetable pro-
duced by the system. Satisfaction of a particular types of
preferences (room, time, student conflicts, etc.) is visualized
by the background of each class. The system also provides
all the necessary coordination between departmental timeta-
bles, which is important especially between departments that
share resources (instructors, rooms, students, etc.).

Figure 3: Timetable display

Solver
The solver is based on the iterative forward search al-
gorithm (Müller 2005). This algorithm is similar to lo-
cal search methods; however, in contrast to classical local
search techniques, it operates over feasible though not nec-
essarily complete solutions. In such a solution, some classes
may be left unassigned. Still, all constraints on assigned
classes must be satisfied. Such solutions are easier to visual-
ize and more meaningful to human users than complete but
infeasible solutions. Because of the iterative character of the
algorithm, the solver can easily start, stop, or continue from
any feasible solution, either complete or incomplete. More-
over, the algorithm is able to cover dynamic aspects of the
minimal perturbation problem (Müller, Rudová, & Barták
2005), allowing the number of changes to the solution (per-
turbations) to be kept as small as possible.

Competitive Behavior A complicating aspect of real
timetabling problems is the competition for preferred times
and rooms. The more constraints placed on the problem by a



particular class, instructor, or class offering department, the
greater influence they will have on the solution. The general
effect is to weight the solution in favor of those who most
heavily constrain the problem. This can create both harder
problems to solve and solutions that are perceived as unfair
by other affected groups or individuals. This has been ad-
dressed through weighting of preferences and the introduc-
tion of an automatic balancing constraint.

Interactive Changes A major goal of the system design
was to facilitate the multiple requests for changes in the
timetable that inevitably occur. While initially an approach
for finding alternate solutions with minimal change to the
initial solution was incorporated, an interactive mode for ex-
ploring the possibility of changes, and easily making them,
was also found to be necessary. An approach was therefore
developed to present all feasible solutions and their costs
that can be reached via a backtracking process of limited
depth. The user is allowed to make the determination of the
best tradeoff between accommodating a desired change and
the costs imposed on the rest of the solution with a knowl-
edge of what those costs will be. A further refinement was to
allow some of the hard constraints to be relaxed in this mode.
This means, for instance, that the user can put a class into a
room different from the ones that were initially required.

Figure 4: Suggestions provided to the user

Figure 4 shows a list of suggestions (nearby feasible solu-
tions) provided to the user for the given class. A user can
either pick one of them, ask solver to provide more sug-
gestions by increasing the search depth (only two changes
are allowed by default) or try to assign a class manually by
selecting one of its possible placements. In this last case,
a list of conflicting classes is shown together with a list of
suggestions for resolving these conflicts. The user can either
apply the selected assignment (which will cause the conflict-
ing classes to be unassigned), pick one of the suggestions, or
manually resolve conflicts by selecting a new placement for
each conflicting class.

Data Consistency Often during the early stages of the
timetabling process, the input data provided by schedule
managers are inconsistent. This means that the problem
is over-constrained, without any complete feasible solution.
A very important aspect of the timetabling system is there-
fore an ability to provide enough information back to the
timetablers describing why the solver is not able to find a
complete solution.

In prior work on this problem (Müller, Rudová, & Barták
2005), a learning technique, called conflict-based statistics,
was developed that helps the solver to escape from a local
optimum. This helps to avoid repetitive, unsuitable assign-
ments to a class. In particular, conflicts caused by a past
assignment, along with the assignment that caused them,
are stored in memory. This information learned during the
search is also useful in providing the user with relevant in-
formation about inconsistencies and for highlighting diffi-
culties in the problem.

Student Sectioning
Before and during the construction of the timetable, course
demand can be collected from students. During this pre-
registration process, each student can create a list of re-
quested courses together with his or her preferences (see
Fig. 5). These preferences contain course priorities (order of
courses based on their importance for the student), alterna-
tive course requests, free time requests, wait-list preferences
(if space is not available, should he or she be assigned to the
appropriate wait-list for the course), and additional schedule
distribution preferences.

Figure 5: Student course demands example

Initial Sectioning During the construction of the course
timetable, course demands of pre-registered students are
considered. Since many students are anticipated to register
later in the process, projected course demands are consid-
ered as well. These are deducted from the last-like semester
enrollments, e.g., fall 2006 course enrollment patterns are
used to predict fall 2007 course demands. Minimization of
potential student conflicts is one of the optimization criteria
of the timetabling solver. Two classes are conflicting, i.e.,
they cannot be attended by the same students, if they are
overlapping in time or if they are back-to-back (the second
class starts just after the first ends) and placed in rooms that
are too far apart.

Before the course timetabling solver is started, an initial
sectioning of students into classes is processed. However, it
is still possible to improve on the number of student conflicts
in the solution. This is accomplished by moving students be-
tween alternative classes of the same course during or after
the search for a timetabling solution.

Batch Sectioning After the course timetable for the en-
tire university is constructed, the batch student sectioning
process is executed. In this process, all pre-registered stu-
dents are assigned to specific sections (classes) of courses in



order to minimize conflicts as well as optimize preferences
provided by students. Additional constraints deducted from
the course structure and reservations on space in particular
courses or classes are respected. Students who are not able
to enroll in a requested course (or alternate) are enrolled to
the appropriate wait-lists.

The batch student sectioning also uses the projected stu-
dent demand to compute the expected number of students in
each class for the subsequent online sectioning phase. Pre-
registered students take precedence over projected student
demand however. This means that a pre-registered student
cannot be bumped out a requested course because of a pro-
jected student, but he or she may be assigned to a class at
a time that does not prevent projected students from taking
the course as well. Based on the computed solution, pre-
registered students are assigned to classes and wait-lists and
the projected students course demands are used to identify
space in each section that is to be reserved for students that
are not yet registered. This information is then used in the
online sectioning phase in order to direct students away from
sections that are expected to be taken by later enrolling stu-
dents.
Online Sectioning After batch sectioning takes place, stu-
dents can make changes in their schedules using the online
interface. During this phase, pre-registered students are al-
lowed to remove themselves from requested courses or re-
quest additional courses and a new sectioning solution is
provided in real-time. They can also change their class en-
rollments if there are other classes of the course that are
available or wait-list themselves to classes that are not cur-
rently available. Wait-lists are automatically processed as
space is freed in courses and classes. Some changes in the
course timetable may also occur, potentiality causing some
re-sectioning of enrolled students. New students use the
same interface as pre-registered students. They begin by en-
tering course requests, based on which they are sectioned to
classes in real-time. They may then continue in the on-line
sectioning the same as continuing students (see Fig. 6).

Figure 6: Student class enrollments with possible choices

As students submit schedule requests, each course is
ranked in priority order. During real-time student section-
ing, the search employs a backtracking process considering
possible assignments beginning with those classes associ-
ated with the students highest priority course. As it evalu-
ates each possible assignment, it compares available space
with the space expected to be taken by the future students
for each class. The difference between available space and
the expected need for each class is used to direct students
away from class assignments that would result in excess de-
mand; however, in no case is an eligible student blocked
from scheduling a course offering as a result of expected fu-
ture demand. As students are assigned to specific classes
during the sectioning process, the expected demand for each
class is adjusted to reflect the assignment.

Conclusions
Based on the successful implementation of the system de-
scribed here, it is clear that complex university course
timetabling and student sectioning problems can be solved
in practice. This system provides a method for modeling
the structure of course offerings and other essential prob-
lem constraints. It uses these along with student demand to
to build and modify course timetables and create individual
student class schedules that satisfy student needs and mini-
mize conflicts. The resulting application should be usable by
a wide range of institutions wishing to address similar prob-
lems. Other universities wanting to explore these solution
approaches are invited to make use of the application and/or
participate in the continuing research in this area.

References
Carter, M. W., and Laporte, G. 1998. Recent developments
in practical course timetabling. In Burke, E., and Carter,
M., eds., Practice and Theory of Automated Timetabling
II, 3–19. Springer-Verlag LNCS 1408.
McCollum, B. 2006. University timetabling: Bridging
the gap. In Burke, E. K., and Rudová, H., eds., PATAT
2006 — Proceedings of the 6th International Conference
on the Practice and Theory of Automated Timetabling, 15–
35. Masaryk University.
Müller, T.; Rudová, H.; and Barták, R. 2005. Minimal
perturbation problem in course timetabling. In Burke, E.,
and Trick, M., eds., Practice and Theory of Automated
Timetabling V. Springer-Verlag LNCS 3616. 126–146.
Müller, T. 2005. Constraint-based Timetabling. Ph.D. Dis-
sertation, Charles University in Prague, Faculty of Mathe-
matics and Physics.
Murray, K.; Müller, T.; and Rudová, H. 2007. Model-
ing and solution of a complex university course timetabling
problem. In Burke, E., and Rudová, H., eds., Practice and
Theory of Automated Timetabling VI. Springer-Verlag. In
print.
Petrovic, S., and Burke, E. K. 2004. University
timetabling. In Leung, J. Y.-T., ed., The Handbook of
Scheduling: Algorithms, Models, and Performance Anal-
ysis. CRC Press. chapter 45.


