
ITC 2019: Preliminary Results Using the UniTime Solver

Tomáš Müller

Abstract This abstract presents some preliminary results on using the Uni-
Time solver on the International Timetabling Competition 2019 early data
sets. The results are compared with the best solutions of the two milestones
that are published on the competition website. More results will follow in the
PATAT 2020 presentation and in the later version of this paper as the final
results of the competitions are made publically available.

Keywords University course timetabling · ITC 2019 · UniTime

1 Introduction

Building on the success of the earlier timetabling competitions, the Interna-
tional Timetabling Competition 2019 (http://www.itc2019.org) is aimed
to motivate further research on complex university course timetabling prob-
lems coming from practice. The competition data sets are based on real-world
problems that have been collected using the UniTime application [7]. The in-
dividual timetabling problems are quite large with the largest problem having
close to 9,000 classes and over 38,000 students. The data for the competition
have been collected from 10 institutions around the world and there are a lot
of differences between them. For example, some instances have no students
(classes are spread in time using hundreds of non-overlapping constraints),
some instances are based on student pre-registrations (aka post-enrollment
course timetabling) and some instances are based on curricular data. There
have been three sets of 10 instances published during the competition: early,
middle and late. At the time of writing this abstract, only interim results from
the early data sets have been published based on the two milestones.

T. Müller
Purdue University
West Lafayette, Indiana, USA
E-mail: muller@unitime.org

http://www.itc2019.org


2 T. Müller

The competition problem combines student sectioning together with stan-
dard time and room assignment of individual course events [6]. Classes are
organized in a course structure defining the valid combinations of classes a
student can take. For example, each student taking a Mathematics course
needs to attend a lecture and a lab that is associated with the lecture. The
problem also deals with travel times between individual rooms, classes that
have different lengths and multiple meetings on a week, classes that are meet-
ing only during certain weeks, and various additional distribution constraints,
such as minimizing gaps between classes of an instructor or defining how many
class hours an instructor can teach on a day.

UniTime [8] is a comprehensive educational scheduling system that sup-
ports developing course and exam timetables, managing changes to these
timetables, sharing rooms with other events, and scheduling students to indi-
vidual classes. It is a distributed system that allows multiple university and
departmental schedule managers to coordinate efforts to build and modify
a schedule that meets their diverse organizational needs while allowing for
minimization of student course conflicts. The software is distributed free un-
der an open-source license and the UniTime project is a part of the Apereo
Foundation, a non-profit organization whose mission is to develop and sustain
open-source software for higher education.

As the UniTime course timetabling problem is quite complex, with many
additional aspects, some simplifications have been made in the competition
problem as well as on the problems collected from UniTime. The aim was
to reduce the modeling complexity without losing any of the hardness (or
computational complexity) of the problems. For example, in UniTime, it is
possible for a class to need two or more rooms, or in certain cases, for multiple
classes to share a room. Also, some distribution constraints have been removed
or reformulated in the competition problem. For example, instead of having
a back-to-back constraint, the competition problem requires such classes to
be placed in the same room, on the same day, and with the limited time
between the first and the last class. This makes for the same outcome when
the constraint is satisfied, but the penalization of a partially violated soft
constraint is a bit different. More details are discussed in [6].

The paper is organized as follows: in the next chapter, the competition
solver is described. There is a short description of the UniTime solver and the
code written to make the solver work on the competition problem. Results are
presented in the following chapter and conclusions are presented at the end of
the paper.

2 The Solver

In this work, the UniTime course timetabling solver is used as it is, even using
the default configuration that ships with the UniTime application. New code
has been only needed to load the competition problem into the UniTime solver
and to save the solution in the competition format. Other than that, some of



ITC 2019: Using UniTime Solver 3

the penalizations of violated soft distribution constraints have been changed
to follow the competition problem. The code is open-source (under the Apache
license) and available in GitHub [3].

The UniTime solver is based on an iterative forward search (IFS) algo-
rithm [7]. This algorithm is similar to local search methods; however, in con-
trast to classical local search techniques, it operates over feasible, though not
necessarily complete, solutions. In these solutions, some classes may be left
unassigned. All hard constraints on assigned classes must be satisfied. Such
solutions are easier to visualize and more meaningful to human users than
complete but infeasible solutions. Because of the iterative character of the al-
gorithm, the solver can also easily start, stop, or continue from any feasible
timetable, either complete or incomplete.

The algorithm makes use of Conflict-based Statistics (CBS) [5] to prevent
itself from cycling. The IFS algorithm is used until a complete timetable is
found. In the next phase, a local optimum is found using a Hill Climbing (HC)
algorithm. Once a solution can no longer be improved using this method, the
Great Deluge (GD) technique [1] is used. The GD algorithm is altered so that
it allows some oscillations of the bound that is imposed on the overall solution
value [4].

The solver splits the problem into two sub-problems: student sectioning
and class assignment. In the beginning, students are assigned to individual
classes following their course demands and course structure. Students with
similar courses are kept together as much as possible, using a simple con-
struction heuristics while sectioning one course at a time. This allows for the
computation of potential student conflicts between individual classes, that is,
the numbers of students assigned to pairs of classes that are overlapping in
time or are one after the other in rooms that are too far apart. During the
solver run, classes are assigned in times and rooms while the number of student
conflicts is minimized, together with the other penalizations on assigned times,
rooms, and violated soft distribution constraints. When the class assignment
solver is finished, a local-search technique is used to move students between
alternative classes or to swap two students between such classes. During the
class assignment, student conflicts between two classes that have some alter-
natives are weighted less (0.2 of the weight defined in the problem) than the
conflicts between classes with no alternatives (i.e., conflicts that cannot be
removed by re-sectioning).

More details about the UniTime solver, including various improvements
that have been done over the years, are presented in [4].

3 Results

The best and the average penalty from 50 independent runs are presented in
the following table. The results were computed using Mac Pro (Mid 2012)
with two 6-Core Intel Xeon processors running at 3.06 GHz, 64 GB memory,
OS X 10.15 and Java 8. The solver uses only one CPU core, and the time



4 T. Müller

Table 1 Solver results compared with the two milestones.

Instance M1 M2 UT Best Average Time Room Dist Students

agh-fis-spr17 9, 259 7, 270 4,687 5, 696.7 236.8 518.4 141.5 421.7

agh-ggis-spr17 98, 868 49, 901 47,461 51, 837.9 1, 219.0 687.5 1, 163.3 5, 765.0

bet-fal17 327, 048 303, 399 293,925 295, 912.8 223.8 8, 827.7 8, 942.6 896.4

iku-fal17 74, 335 19,080 27, 867 29, 553.1 21, 401.8 5, 972.8 72.6 0.0

mary-spr17 26, 825 14,927 15, 228 16, 034.3 886.0 145.3 2, 702.7 60.4

muni-fi-spr16 6, 918 4,112 4, 122 4, 336.0 218.5 214.3 3.6 686.0

muni-fsps-spr17 33, 760 5, 601 885 2, 002.6 2.5 89.5 67.5 8.4

muni-pdf-spr16c 125, 938 85, 248 52,005 55, 905.4 5, 364.6 5, 143.4 448.5 1, 464.3

pu-llr-spr17 34, 962 10,046 11, 387 11, 956.9 934.8 1, 979.9 52.2 792.2

tg-fal17 8, 990 4,215 5, 795 6, 644.0 1, 938.6 1, 209.9 77.8 0.0

limit was restricted to two hours. UniTime solver cpsolver-1.3.189 was used
in the experiment. All the runs were done with the same parameters (using
the UniTime’s default solver configuration), without any parameter tunning
or consideration of a particular instance. The results are compared with the
best solutions from the two competition milestones.

Table 1 shows the results from the experiment compared with the best
solutions from the ITC 2019 from the two milestones that have already been
published. The columns M1 and M2 have the two milestones, UT Best shows
the penalty from the best solution of the 50 independent runs and the Aver-
age shows the average result. The best solutions are indicated in bold. The
last four columns show how the average penalty is split between time, room,
distribution penalties and student conflicts.

The solver was able to produce a solution that is better than the two
milestones in five cases. Surprisingly, it did the worst on the two instances
that have no students (iku-fal17 and tg-fal17; comparing the M2 results with
the UT Best), see [2] for more details about the early instances. Out of the
five instances where UniTime solver is better than the two milestones, only
agh-ggis-spr17 is so close that the average result is worse than the second
milestone. In three instances, agh-fis-spr17, bet-fal17, and muni-pdf-spr16c,
the UniTime solver has provided a better solution in every single run than the
milestone.

4 Conclusion

While the UniTime solver is doing quite well, it has been beaten on half of
the early instances already. Better results can be achieved with longer run
times and some parameter tuning, which has only been done to a very limited
extent. Some additional improvements can be done as well, e.g., students can
be re-sectioned continuously during the search, or some of the complexity of
the solver (that is not needed for the competition) can be removed.



ITC 2019: Using UniTime Solver 5

On the other hand, it is good to see that the competitors are able to
produce results that are in par or better than what UniTime would produce
out of the box. If this abstract is accepted, a comparison with the final results
will be presented at the conference.

References

1. Dueck, G.: New optimization heuristics: The great deluge algorithm and the record-to
record travel. Journal of Computational Physics 104, 86–92 (1993)

2. ITC 2019: International timetabling competition 2019 – Early instances. https://www.

itc2019.org/early-instances

3. Müller, T.: UniTime ITC 2019 solver source codes. https://github.com/tomas-muller/
cpsolver-itc2019

4. Müller, T.: University course timetabling: Solver evolution. In: Practice and Theory of
Automated Timetabling 2016 Proceedings, pp. 263—-282 (2016)

5. Müller, T., Barták, R., Rudová, H.: Conflict-based statistics. In: EU/ME Workshop on
Design and Evaluation of Advanced Hybrid Meta-Heuristics (2004)

6. Müller, T., Rudová, H., Müllerová, Z.: University course timetabling and international
timetabling competition 2019. In: Practice and Theory of Automated Timetabling 2018
Proceedings, pp. 5–31 (2018)

7. Rudová, H., Müller, T., Murray, K.: Complex university course timetabling. Journal of
Scheduling 14(2), 187–207 (2011)

8. UniTime: University timetabling – Comprehensive academic scheduling solutions. https:
//www.unitime.org

https://www.itc2019.org/early-instances
https://www.itc2019.org/early-instances
https://github.com/tomas-muller/cpsolver-itc2019
https://github.com/tomas-muller/cpsolver-itc2019
https://www.unitime.org
https://www.unitime.org

	Introduction
	The Solver
	Results
	Conclusion

