
University Course Timetabling

with Soft Constraints
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Abstract. An extension of constraint logic programming that allows
for weighted partial satisfaction of soft constraints is described and ap-
plied to the development of an automated timetabling system for Purdue
University. The soft constraint solver implemented in the proposed solu-
tion approach allows constraint propagation for hard constraints together
with preference propagation for soft constraints. A new repair search al-
gorithm is proposed to improve upon initially generated (partial) assign-
ments of the problem variables. The model and search methods applied
to the solution of the large lecture room component are presented and
discussed along with the computational results.
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1 Introduction

This paper describes the design approach and solution techniques being devel-
oped for an automated timetabling system at Purdue University. The initial
problem considered here is the design of an intelligent system to assist with con-
struction of the large lecture component of the university’s master class sched-
ule. The design anticipates expanding the scope of the problem to accommo-
date a demand-driven approach to timetabling all classes at the University. In
demand-driven timetabling, student course selections are utilized to construct
a timetable that attempts to maximize the number of satisfied course requests.
In the initial problem we consider the course demands of almost 29,000 students
enrolled in approximately 750 classes, each taught several times a week.

A solution to the timetabling problem is being developed using constraint
logic programming [28, 18]. CLP is a respected technology for solving hard prob-
lems which include many complicated (non-linear) constraints [15]. Its main
advantages over other frameworks are the declarative nature of problem descrip-
tions via logical constraints, and a constraint propagation technique for reducing
the search space.



Timetabling problems [8, 27] are often over-constrained, which is the case
with our problem since it is not possible to satisfy all requests of students for en-
rollment to specific courses. Preferential requirements for time and room assign-
ment may also lead to the problem being over-constrained. Soft constraints [10, 5]
can be applied to define these requirements declaratively rather than encapsu-
lating many of them into the control part of the problem solution. In our prob-
lem solution, we have applied a weighted CSP [10] approach which considers
weights/costs for each constraint and minimizes the weighted sum of unsatisfied
constraints.

Our work includes development of a new solver for soft constraints. The solver
was implemented as an extension of the CLP(FD) library [6] of SICStus Prolog.
This approach is of particular importance for the construction of demand-driven
schedules where complete satisfaction of all constraints is not feasible. Soft con-
straints have also been applied to accommodate the preferences of instructors
with respect to time and room assignments for their classes We will also describe
a new search algorithm based on backtracking with constraint propagation. This
search procedure allows the return of a partial solution even when the problem
is over-constrained.

The following section of this paper presents a description of our timetabling
problem. Section 3 explains the soft constraint solver that was implemented. The
new search algorithm developed for this problem is detailed in Section 4. This is
followed by a description of how the problem has been modeled, including the
representation of soft and hard constraints. In addition, the methods applied to
the search for a feasible solution are discussed. Computational results are dis-
cussed in Sec. 6. Comparisons with other approaches to solving demand-driven
timetabling problems and applying soft constraints to the problem solution are
presented in Sec. 7. The final section reviews the results of our work and looks
to future extensions of the problem solution and soft constraint solver improve-
ments.

2 Problem Description

At Purdue University, the timetabling process currently consists of constructing
a master class schedule prior to student registration. The timetable for large
lecture classes is constructed by a central scheduling office in order to balance
the requirements of many departments offering large classes that serve students
from across the university. Smaller classes, usually focused on students in a single
discipline, are timetabled by “schedule deputies” in the individual departments.
This process has been tailored to the political realities of a decentralized univer-
sity, where faculty can be quite put off by the idea of having a central office tell
them when to teach, or even by providing such an office with much information
about when they are available to teach.

A natural decomposition of the university timetabling problem has therefore
resulted, consisting of a central large lecture timetabling problem and 74 disci-
plinary problems. Construction of the timetable for large lectures is the primary



focus of in this paper. This problem consists of approximately 750 classes having
a high density of interaction that must fit within 41 lecture rooms with capaci-
ties up to 474 students. Course demands of almost 29,000 students out of a total
enrollment of 38,000 must also be considered. The departmental problems range
from only a few classes up to almost 700, with an average size of slightly more
than 100 organized classes. The largest departmental problems are simplified by
having many sections of the same course that are offered at multiple times.

The timetable maps classes (students, instructors) to meeting locations and
times. A major objective in developing an automated system is to minimize the
number of potential student course conflicts which occur during this process.
This requirement substantially influences the automated timetable generation
process since there are many specific course requirements in most programs of
study offered by the University.

To minimize the potential for time conflicts, Purdue has historically sub-
scribed to a set of standard meeting patterns. With few exceptions, 1 hour x
3 day per week classes meet on Monday, Wednesday, and Friday at the half
hour. 1.5 hour x 2 day per week classes meet on Tuesday and Thursday during
set time blocks. 2 or 3 hours x 1 day per week classes must also fit within spe-
cific blocks, etc. Generally, all meetings of a class should be taught in the same
location. Conforming to this set of standard meeting patterns will be seen to
have a strong influence on both the problem definition and the solution process,
since the meeting patterns defined for each class introduce hard restrictions on
the acceptability of any generated solution.

Another important constraint on the problem solution is instructor availabil-
ity. Balancing instructor time preferences was found to be a critical factor in
developing acceptable solutions since an earlier attempt [20] to automate time-
tabling at Purdue was unsatisfactory largely because solutions heavily favored
instructors who imposed the most constraints.

Room availability is a also a major constraint for Purdue. In addition to
room capacity, it was necessary to consider specific equipment needs and the
suitability of the room’s location. Historically, a limited number of classrooms
has been used to force a wide distribution class times. Increased enrollments,
however, have left the university with little excess room capacity.

Another aspect of the timetabling problem that must be considered here is
the need to perform an initial student sectioning. Most of the classes in the large
lecture problem (about 75%) correspond to single-section courses. Here we have
exact information about all students who wish to attend a specific class. The re-
maining courses are divided into multiple sections. In this case, it is necessary to
divide the students enrolled to each course into sections that will constitute the
classes. Without this initial sectioning it is not easy to measure the desirability
or undesirability of having classes overlap in the timetable. Our current approach
sections students in lexicographic order before joint enrollments between classes
are computed. This gives us the worst case possibility. The university currently
processes a precise student schedule after the master class schedule is created,



however, which should introduce some improvements. Possible directions for im-
proving this solution are discussed in the final section.

3 Solver for Soft Constraints

Constraint propagation algorithms for the soft constraints are implemented as
a part of the soft constraint solver [24]. This constraint solver is built on top
of the CLP(FD) solver of SICStus Prolog [6] and implemented with the help
of attributed variables. An advantage of this implementation is the ability to
include both hard constraints from the CLP(FD) library and soft constraints
from a new soft constraint solver.

3.1 Preference Variables and Preference Propagation

The soft constraint solver handles preferences for each value in the domain of
the variable which will be called the preference variable. Each preference corre-
sponds to a natural number indicating the degree to which any soft constraint
dependent on the domain value is violated. An increase of the preference during
the computation with soft constraints is called preference propagation. Note the
difference with constraint propagation, which removes values from the domain
of the domain variable during the computation of hard constraints. Removal of
domain values may also occur with preference variables. This corresponds to
violation of a hard constraint.

We may also set the degree of acceptable violation for any preference vari-
able. If the preference associated with a value in the domain of the preference
variable should exceed this limit, it is removed from the domain. This possibility
is of particular interest for time (or classroom) variables since all classes (each
represented by a preference variable) should be relatively equal in importance.

Zero preference means complete satisfaction of the constraint for the corre-
sponding value in the domain of the variable. Any higher preference expresses
a degree of violation that would result from the assignment of this value to vari-
able. All values which are not present in the domain of the preference variable
have the infinite preference sup. Preferences for each value in the domain of
the variable may be initialized with a natural number. This allows us to handle
initial preferences of values in the domain of the variable.

Example 1. The unary soft constraint pref(PA, [7-5, 8-0, 10-0], ...) cre-
ates the preference variable PA with initial domain containing values 7, 8, and 10

and preferences 5, 0, and 0, resp. It means that the value 7 is discouraged wrt.
other values. Preferences for remaining values are assumed as infinite, indicating
complete unsatisfaction.

3.2 Binary Soft Constraints

Two binary soft constraints have been implemented in the problem solution.



soft_different( PA, PB, Cost )

soft_disjunctive( PStart1, Duration1, PStart2, Duration2, Cost )

The soft different constraint expresses that the two preference variables PA,
PB should have different values. The constant Cost gives us the cost for vio-
lation of this constraint. The soft disjunctive constraint asks for the non-
overlapping of the two tasks specified by the preference variables PStart1,
PStart2 and the constant durations Duration1, Duration2. Again the Cost

is the weight of this constraint.
Algorithms for both constraints are based on the partial forward checking

algorithm and inconsistency counts [10] which are stored in the preferences for
each value of the preference variable. Let us take a look at the soft different

constraint. Once the first preference variable is instantiated to some value X, the
inconsistency count for the second variable and the value X should be increased
by Cost, i.e., the preference propagation is processed for this variable and value.
The soft disjunctive would process preference propagation for all values in
the interval X..(X+Duration-1).

3.3 Cost Function

For each preference variable, the soft constraint solver maintains an additional
domain variable (cost variable) having the current best preference of the prefer-
ence variable as its lower bound. The initial upper bound is set to infinity. Any
preference propagation results in an increase of the current best preference, with
the lower bound of the cost variable being increased accordingly.

Preferences for each value of the preference variables are used to store initial
preferences and any changes in the inconsistency counts for these values. This
information is reflected in the cost variables. The sum of all cost variables gives
us the total cost of the solution (cost function). The cost function can be then
applied during labeling and optimization.

For efficiency, only the bound consistency is processed for all cost variables.
This means that only changes to the lower and upper bounds are maintained.
Any change in the current best preference is stored in the lower bound and,
during optimization, the upper bound may be used to prune the search space.

4 Limited Assignment Number Search Algorithm

The aim of our problem solution is to be able to search for the complete as-
signment of the preference variables giving the best possible satisfaction of all
soft constraints. Since the evaluation of the assignment is given by the sum
of the corresponding cost variables, it may seem possible to apply a classical
branch&bound algorithm. Unfortunately it is not easy to find such a complete
assignment. Mistakes in the assignment of some variable(s) may lead to a time
consuming exploration of the search space with no complete solution. A com-
plete assignment may not even exist due to conflicts among the hard constraints.



Because of these disadvantages, we have proposed a new non-systematic itera-
tive search algorithm based on chronological backtracking— limited assignment
number (LAN) search algorithm [29]. It attempts to find some initial partial
assignment of the variables and subsequently repair it such that all, or at least
most, of the variables are assigned a value.

For each variable, the LAN search algorithm maintains a count of how many
times a value has been assigned. A limit is set on this count. If the limit is ex-
ceeded, the variable is left unassigned and the search continues with the other
variables. Labeling of unassigned variables is not processed even during back-
tracking. As a result of this search, a partial assignment of variables is obtained
together with the set of the remaining unassigned variables.

Limiting the number of attempts to assign a value to each variable ensures
the finiteness of this incomplete search. The current limit is set to the maximal
domain size d of any labelled variable. As each of n variables can be tried d times,
one iteration of the LAN search is of linear complexity O(dn).

Results of the LAN search process are used in subsequent iterations of the
search. The following variable and value ordering heuristics are developed based
on the previous iteration:

– values of successfully assigned variables are used as initial assignments in
the next iteration— once a suitable value for a variable has been found, it
remains a promising assignment;

– unsuccessfully attempted values for any variable left unassigned are demoted
in the ordering so that they will be tried last in the subsequent iteration—
a suitable value is more likely to remain among those that have not been
tried;

– any variable left unassigned is labeled first in the subsequent iteration— it
may be difficult to assign a value to the variable, therefore, it should be given
preference in labeling.

In the first iteration of the algorithm (initial search) we have a choice of using
either problem-specific heuristics or standard heuristics, such as first-fail [28],
for variable ordering. The most promising values are used for value ordering. In
successive iterations (repair searches), heuristics based on the previous iteration
are primarily used. Any ties are broken in favor of the initial search heuristics.

The user may also manually modify the results after each iteration to influ-
ence the behavior of the heuristics, relax constraints to eliminate contradictory
requirements, or change the problem definition. The options available for con-
tinuing the search are as follows:

1. processing the automated search as proposed above;
2. defining other values to be tried first or last based on user input, and process

the repair search directed by the updated value ordering heuristics;
3. relaxing some hard constraints based on user input, and processing the initial

search or the repair search;
4. addition or deletion of variables or constraints based on user input, and

applying the repair search to reuse results of the former solution.



The first possibility is aimed at automated generation of a better assignment.
Approach 2 allows the user to direct the search into parts of the search space
where a complete assignment of variables might more easily be found. Step 3
can be useful if the user discovers a conflict among some hard constraints based
on a partially generated output. The repair search can reuse most of the results
from the former search and permute only some parts of the last partial assign-
ment. Let us note that there is often an advantage to a user directed search
in timetabling problems, since the user may be able to detect inconsistencies
or propose a suitable assignment based on a partially generated timetable. The
last possibility introduces a new direction for the development of the algorithm
aimed at incorporating changes to the problem input. This will be studied in
detail as a part of our future work.

5 Problem Solving

We would like to describe a model for the timetabling problem which consists
of variables for the time and room assignments of each class and of both hard
and soft constraints, applying an approach described in the previous section. We
also explore the control portion of the solution, which consists of the application
of the proposed initial and repair searches.

5.1 Time and Classroom Variables

The domain of the time variables is represented by the natural numbers 0..104,
corresponding to 5 days of 21 half-hours. The domain of the classroom variables
is represented by the natural numbers 1..Number Of Classrooms.

Each class consists of between one and five meetings per week (typically
two or three). All meetings have the same duration and are typically taught at
the same time of day. Valid combinations of the number of meetings and the
duration are called meeting patterns. Each meeting pattern (e.g., 1 hour x 3
meetings) has a defined set of days on which the meetings may be scheduled
(e.g., Monday, Wednesday, Friday for 1 hour x 3 meetings). Interestingly, the
start time of the first meeting of a class differs from the start times of the
following meetings by a constant factor for most combinations (see Table 1).
Excepting the MF (Monday and Friday) combination for 2 meetings per week
and the 4 meeting patterns (includes less than 1% of classes), one time variable
is sufficient to contain the complete information about the start time of classes.
This is a preference variable indicating the start time of the first meeting (T1).
It will be referred to as the time preference variable. The starting times of all
remaining meetings (T2,..., Tn) are domain variables only, and may be related
to the time preference variable by the simple constraint

Ti#= T1 + Constant ∗ (i− 1) . (1)

Preferences associated with each value in the domain of the time preference
variable allow us to express the degree to which any time assignment for a class



Table 1. Maximal sets of the possible combinations of days for class with given number
of meetings per week (e.g., TTh means that course can have its meetings on Tuesday
and Thursday).

Number of meetings Possible combination of days

1 M or T or W or Th or F

2 MW or TTh or WF or MF

3 MWF

4 TWThF or MWThF or MTThF or MTWF or MTWTh

5 MTWThF

is preferred or discouraged. The remaining domain variables may be referenced
in the hard constraints (e.g., serialized), but they do not require the more
expensive processing by the soft constraint solver.

Since all class meetings should be taught in the same room, we suffice with
only one common classroom variable for all meetings (called the classroom pref-
erence variable). As a preference variable, it associates a preference with each
classroom expressing how desirable or undesirable it is for a given class.

5.2 Hard Constraints

Let us summarize the requirements which are implemented in the system using
hard constraints:

1. meeting pattern specification;
2. prohibited or required times for classes;
3. class requires room with sufficient seating capacity;
4. class requires or prohibits some building(s) or room(s);
5. class requires or prohibits classroom of a specified generic type (computer,

computer projection, audio recording, document camera, . . . );
6. classes taught by the same instructor do not overlap;
7. sections of the same course do not overlap;
8. additional constraints over selected sets of classes: classes must be taught at

the same times, on the same days, in the same classrooms, . . .

Meeting pattern constraints relate the domain variables for all class meetings
as was described in Eqn. 1. In addition, the domain of the time preference
variable is reduced such that all invalid values are removed.

Example 2. A 1.5 hour x 2 meetings class is represented by the two variables
T1, T2. The first of these is the time preference variable with the initial domain
(0..104) reduced to the values 21,24,...,39 because the TTh combination
is valid only. The second domain variable is related with T1 by the constraint
T2 #= T1 + (21*2)*1. The constant separating start times here is 21 periods
x 2 days.



A 2 hours x 2 meetings class has MW, TTh, and WF as valid meeting
day combinations. It is represented by the two variables T1, T2 related by the
same constraint as before. The reduced domain of T1 corresponds to the values
0,4,8,12,16, 21,25,29,33,37, 42,46,50,54,58.

Requirements 2–5 are implemented by domain reduction in the corresponding
domains of the time and classroom preference variables. Requirements 6 and 7
are included with help of the constraint serialized which constrains tasks,
each with a start time and duration, so that no tasks ever overlap. Built-in
constraints of CLP(FD) library of SICStus Prolog are used to implement various
requirements over selected sets of classes as mentioned in the item 8.

Additional hard constraints must be posted to assure that each class is as-
signed to just one suitable classroom. This requirement could be implemented
via the disjoint2 constraint, which ensures non-overlapping of a set of rect-
angles. In our case, the rectangle is defined by the start time variable (Time)
and the duration (Duration) of each meeting, and by the classroom variable
(Classroom) for the corresponding class:

disjoint2( [ rectangle(Time, Duration, Classroom, 1) | _ ] ) .

The number 1 represents the requirement of one classroom for each meeting.
A different type of propagation among the time variables is achieved via

the cumulative constraint. It ensures that a resource can run several tasks in
parallel, provided that the discrete resource capacity is not exceeded. If there
are N tasks, each starting at a certain time (StartI), having a certain dura-
tion (DurationI) and consuming a certain amount of resource (ResourceI),
then the sum of resource usage of all the tasks must not exceed resource limit
(ResourceLimit) at any time:

cumulative([Start1,...,StartN], [Duration1,...,DurationN],

[Resource1,...,ResourceN], ResourceLimit) .

The cumulative constraint helps to assign a classroom of sufficient size to
each meeting while allowing smaller classes to be assigned to larger classrooms.

Example 3. Let us imagine a small example with 2 rooms for 40 students,
3 rooms for 20 students, and 1 room for 10 students. The set of cumulative
constraints follows

cumulative(Time_meetings_with_size_40, Dur_40, ListOf1, 2),

cumulative(Time_meetings_with_size_20_40, Dur_20_40, ListOf1, 5),

cumulative(Time_all_meetings, Dur_all, ListOf1, 6).

The first constraint ensures that the largest classes are accommodated into the
largest rooms, the second constraint allows medium-sized classes to be placed
into rooms for 20 students, and also into rooms for 40 students if they are not
already asked for by the first constraint. The third constraint allows movement
of small classes between all rooms, subject to the condition that they are not
occupied by any larger classes at the same time.



More precisely, we can post one cumulative(Starts, Durations, ListOf1,

Limit) constraint for each possible size of classroom denoted by Size. The con-
stant ListOf1 denotes a list of 1 representing a unit resource requirement (one
classroom) by each course. Durations represents the durations of classes with
the start time Starts. Variables Starts and Limit should satisfy the following
properties

Starts= {Start|meeting(Start,Duration,Capacity)∧ Capacity≥ Size}
Limit= card{Id|classroom(Id,Capacity)∧ Capacity≥ Size}

Actually, it is sufficient to post this constraint only for some specific sizes of
classrooms. Classrooms of similar size are grouped together to achieve better
efficiency.

Another possibility for taking cumulative constraints into account consists
of splitting classrooms into groups by size. Each class would be included in the
group of corresponding size only. Such division can be useful if we do not want to
put smaller classes into larger classrooms of other group at any time (e.g., smaller
classes must be in the classrooms with a capacity smaller than 400 students).

5.3 Soft Constraints

Three types of soft constraints are currently handled by the system which will
be discussed in this section:

1. unary constraints on time variables— faculty time preferences;
2. unary constraints on classroom variables— faculty preferences on the class-

room selection for classes;
3. binary constraints for each joint enrollment between two classes.

Instructors may specify preferences for the days, hours, or parts of days they
wish to encourage or discourage. This specification is transformed into a list of
integer preferences corresponding to the possible start time of each class. We
have seen that the initial selection of start times for each class is determined by
its meeting pattern. The domain size of this set of start times can differ greatly
among meeting patterns (it ranges from 5 to 50 possible values). This causes the
relative effect of any given preference to vary greatly among the meeting patterns.
To compensate for this effect, the number of preference points associated with
instructor time preferences differ based on the meeting pattern.

Each class is associated with a time preference variable with preferences ini-
tialized either as specified by the instructor or to a set of default preferences.
These default preferences are very important— their exclusion would lead to the
construction of timetables which discriminate against classes for which no pref-
erences have been provided. Many such classes would be placed in undesirable
times, which no human timetabler would want to do.

Instructors may also specify positive or negative preferences towards the
room selection for each class. It is possible to prefer or discourage particular
classrooms, buildings, or properties of the room (e.g., “I prefer classrooms with



a computer.” or “I discourage classrooms without windows.”). Each value in the
domain of the classroom preference variable has either the specified preference
or the neutral preference specification.

Any two classes potentially have a number of students who are enrolled to
both at the same time. We seek to control their degree of overlap in the timetable
by a generalization of the soft disjunctive constraint (see soft disjunctive in
Sec. 3.2). Such binary soft constraints include two time preference variables for
corresponding classes, with the cost given by the number of students enrolled in
both. Since each class may have several meetings, such a generalized disjunction
needs to propagate preferences to the all values of the uninstantiated preference
time variable which could be affected by the overlap of any of the meetings.

5.4 Cost Functions

There are two types of cost functions in our problem formulation. The first is
related to the assignment of time preference variables. The second is dependent
on the classroom preference variables.

Preferences associated with the time preference variables are influenced by
the times faculty wish to teach or not teach, and by the soft constraints on joint
enrollments. Time preferences are initialized based on faculty input. Constraints
on joint enrollments propagate (increase) preferences during computation of the
cost function. The sum of the cost variables (see Sec. 3.3) for the time preference
variables gives this cost function, i.e., the solution cost wrt. time assignment. As
a consequence, we need to balance the number of student joint enrollments from
the third constraint with the number of preference points assigned by the first
constraint, (e.g., the sum of preference points associated with an instructor for
one class corresponds to an overlapping of 20 students). The relationship between
preference points and joint enrollments is specified as part of the input data.

The sum of the cost variables related with the classroom preference variables
represents the second cost function. Its value is dependent on the satisfaction of
faculty preferences on classroom selection.

Both cost functions are independent of each other and introduce two different
criteria in our problem. Minimizing student conflicts and accommodating the
time preferences of classes were judged to be a more critical aspect of the problem
than meeting preferences for classrooms.

5.5 Labeling

Labeling consists of two parts. Time preference variables are processed first,
followed by room preference variables. This ordering corresponds to the relative
importance of the cost functions defined over particular sets of variables (see
Sec. 5.4).

One iteration of the LAN search is applied to find a partial assignment of time
variables. A branch&bound algorithm is then used to find an optimal solution
over classroom variables. If no solution for classroom variables is found within



the time limit, one iteration of the LAN search over the classroom variables is
processed. Once a partial assignment is generated by this process, the search for
a complete solution may continue by repeating these steps. The user may also
provide input to influence the behavior of the search (see Sec. 4).

Initial and repair searches using the LAN algorithm over time variables are
processed as described in Sec. 4. The initial search is always processed for class-
room variables however (i.e., the limit on the number of assignments is set but
new heuristics are not developed). Information about an unassigned classroom
variable reflects back upon the corresponding time preference variable. Any class-
room variable non-assignment is the result of no classroom being available for
the corresponding time. To reflect this fact, the value assigned to a time vari-
able with a corresponding unassigned classroom variable is discouraged in the
subsequent search.

Different initial heuristics were used for time and classroom variable labeling
but the main idea remains always the same: a variation of first-fail was applied
for variable ordering and we have chosen the most preferred values.

Our first-fail heuristics to determine the ordering of classes for time assign-
ment selects the most highly constrained variables with respect to both hard and
soft constraints. First, we select among the variables having the smallest domain.
Ties are broken based on the greatest number of soft constraints related to this
variable. If not selected early, the domain of such a variable may become too
small to select a sufficiently preferred value, or it may even become empty and
cause a backtracking. Early propagation of soft constraints is also encouraged, so
as not to discover mistakes too late. A specific class time assignment was selected
among the most preferred values, i.e., we have chosen an optimistic approach for
the value selection.

Just the first-fail approach was used to choose a class to be placed into
a classroom. The most preferred classroom was selected and ties were broken
by the selection of the smallest available classroom so as not to waste available
resources.

6 Computational Results

Our data set from fall semester 2001 includes 747 classes to be placed into 41
classrooms. The classes included represent 81,328 course requirements for 28,994
students. A complete data set in the form of Prolog facts can be downloaded
from http://www.fi.muni.cz/~hanka/purdue_data. In the future, we inted to
add data from other semesters.

The results presented here were computed by SICStus Prolog 3.9.1 on a PC
with AMD Athlon/850 MHz processor and with 128MB of memory.

Figure 1 illustrates the number of classes with either time or classroom vari-
ables left assigned during subsequent iterations. It can bee seen that the auto-
mated repair search was able to substantially improve on the initial solution.
Only one class remained unassigned after eight iterations. Assignment of this
class was successfully completed with the help of user input. The increase in the



Fig. 1. Change in unassigned classes during the subsequent iterations.
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number of unassigned classes during the second iteration occurs as a result of
the branch& bound search over classroom variables being replaced by the initial
iteration of the LAN search.

Table 2 shows the computational results for the initial search and the sub-
sequent automated repair searches. Satisfied time gives the percentage of how
many encouraged times for classes were selected. Unsatisfied time refers to the
percentage of discouraged times that were selected for classes. Student conflicts
estimates the percentage of unsatisfied requirements for courses by students.
Preferred classrooms measures the percentage of classes for which encouraged
classrooms were selected. The current data set does not include any preferential
requirements which discouraged specific classrooms.

Table 2. Results of particular iterations.

Run 1 2 3 4 5 6 7 8 9

Satisfied time (%) 83.8 81.8 79.9 82.2 80.7 80.7 80.6 80.7 80.7

Unsatisfied time (%) 4.2 4.6 4.4 4.5 4.5 4.5 4.2 4.2 4.5

Student conflicts (%) 1.5 1.6 2.0 1.9 2.1 2.2 2.3 2.3 2.3

Preferred classrooms (%) 74.2 45.3 52.1 47.0 52.7 56.3 49.7 52.3 52.3

We can see that most of preferential requirements of instructors were satisfied
during assignment of time variables. The unsatisfied time percentage mostly
illustrates that a number of classes must be taught at unpopular times due to
the limited number of rooms available. Let us also note that these results include
default preferences for classes with no preferred times.



One iteration took about 2-3 minutes for time labeling. One step of the branch
and bound search for classroom variables took 1-2 seconds. The time labeling
takes longer due to the preference propagation and more complex constraints
(e.g., cumulative) posted on time variables.

Originally we started to solve the problem using a built-in backtracking
search algorithm with a variety of variable and value ordering heuristics. This
attempt did not lead to any solution after 10 hours of computations however.
Too many failed computations were repeated exploring parts of search tree with
no solution.

One of the more important lessons learned here is that the disjoint2 and
cumulative constraints must be used together in a redundant manner to find
an acceptable solution (for description of both constraints see Sec. 5.2). The
cumulative constraints were able to introduce additional constraint propagation
for the time variables by informing them of the available room resources. Neither
cumulative nor disjoint2 constraints alone were able to find an acceptable
solution. Results using only the cumulative constraints left about 20 unassigned
classes. Using only the disjoint2 constraint resulted in 50 unassigned classes.

7 Related Work

Currently the timetable for Purdue University is constructed by a manual pro-
cess. An earlier approach examined for automating construction of the Purdue
University timetable modeled the room-time assignment problem as a multiple
choice quadratic vertex packing and utilized a tabu search algorithm [20]. This
approach was further developed into a prototype system used to create a sched-
ule for large lecture classes in spring 1994, but was never adopted by university
schedulers due to inadequacies in the way it handled instructor time preferences
and student conflicts.

7.1 Soft Constraints

Various approaches to soft constraints have been introduced and studied [23].
These include basic frameworks over particular types of preferences (e.g., weigh-
ted [10], fuzzy CSPs [9]) and also meta-frameworks (e.g., partial [10], semiring-
based CSPs [5]). Solving algorithms for soft constraints include extensions of
the branch& bound algorithm [10, 19] and local search methods, e.g., tabu
search [12]. However, there are still few tools [4, 13] available for soft constraint
solving. To these authors’ knowledge, no library can be used together with an
existing CLP(FD) solver [6, 17]. This paper presents the main ideas behind our
proposal for a new soft constraint solver built on top of the SICStus Prolog
CLP(FD) solver [6]. We have further extended this work. A detailed description
can be found in [24].

Soft constraints are often applied to solve timetabling problems with the help
of constraint satisfaction. Unfortunately they are mostly applied via the stan-
dard constraint satisfaction method, which offers no special support for more



effective resolution of the soft constraints. Golz et al. [14] applies the typical so-
lution — the given unary soft constraints, with priorities, are integrated into the
solution search through value and variable ordering heuristics. An optimization
constraint was applied for solving medium-sized problems [16]. Support for soft
constraints is included in Abdennadher et al. [1]. They describe the solution of
a department-sized problem, including soft constraint solver, for a cost-based
approach implemented with Constraint Handling Rules [11].

7.2 Constraint Programming and Demand-Driven Timetabling

There have not been many attempts [25, 3] to apply constraint programming
to the solution of demand-driven timetabling problems where it is not possi-
ble to satisfy all requests of students. Such over-constrained problems require
enhancements to the classical constraint satisfaction approach. Once these are
developed, we can apply all of the advantages of constraint programming, includ-
ing a declarative description of the problem together with strong propagation
techniques.

We have previously constructed a demand-driven schedule for the Faculty
of Informatics at Masaryk University [25] having 270 classes and about 1250
students. Conflicts of students between classes were controlled using a similar
cost function as in our current approach. Constraint logic programming allowed
implementation of a variety of constraints available in ILOG Scheduler [21]. Soft
constraints were implemented with the help of special variable and value ordering
heuristics defined by the preferences of particular variables in the constraints.
The timetable constructed was able to satisfy 94% of the demands of students
and more than 90% of the preferential requirements of teachers. Unfortunately,
it was not easy to extend this implementation to larger problems due to the
bound consistency algorithms in ILOG Scheduler. Since these algorithms only
propagate changes over the bounds of the domain variables, both constraint and
preference propagations were much weaker than there are now.

A solution of the section assignment sub-problem is included in Banks, van
Beek, and Meisels [3] via iterative addition of constraints into a CSP representa-
tion. Inconsistent constraints are not included in the final CSP representation,
which allows solution of an over-constrained problem. This implementation, in-
cluding its own constraint satisfaction solver, was verified using random time-
tabling problems based on problems from high schools in Edmonton, Alberta,
Canada. The largest data set included requirements of 2,000 students and 200
courses. They were able to satisfy 98% of student demand on more than half of
the experiments. The solution presented is influenced by a special set of times
that must be assigned to each course. It conforms well to high schools, but is
rather different from the situation in university course timetabling. University
class meeting patterns are not as strict, which results in a problem with a vari-
ety of additional requirements and preferences. Their inclusion into the problem
solution can be more easily accomplished with the help of the embedded CLP
system rather than implementing new procedures.



7.3 Other Approaches for Demand-Driven Timetabling

The comprehensive university timetabling system described by Carter [7] is char-
acterized by problem decomposition with respect to both type and size of final
sub-problems. They were able to solve the problem for 20,000 students and 3,000
course sections. The system was used for 15 years at the University of Waterloo.

Aubin&Ferland [2] propose an iterative heuristic method to solve the problem
which alternately assigns times and students to course sections until no further
improvements to the solution can be found. The system was tested on data
from a High School in Montreal including demands of 3,300 students and 1,000
courses.

Robert&Hertz [22] decompose the problem into a series of easier sub-problems
corresponding to time, section, and classroom assignments and solve them via
tabu search methods. The method presented is able to generate an initial solution
which can be incrementally improved after problem redefinition (negotiation on
initial constraints with teachers and students). The initial solution for about 500
students and 340 course sections satisfied about 80% of the preferential require-
ments of teachers. Forty-five students were involved in overlapping situations.

The local search heuristic procedure of Sampson, Freeland, and Elliot [26]
solves a problem having a smaller solution space with 89 course sections and 230
students. They were able to meet 94% of the student scheduling requirements at
the Graduate School of Business Administration at the University of Virginia.

8 Conclusion

We have proposed and implemented a solution to a large scale university timeta-
bling problem and have constructed a demand-driven schedule which is able to
reflect diverse requirements of students during course enrollment. Our solution
is able to satisfy the course requests of 98% of students. About 80% of prefer-
ential requirements on time variables were also met with only a small number
of classes taught at discouraged times (about 4%). The automated search was
able to find suitable times and classrooms for almost all classes. One remaining
class was assigned with the help of the built-in support for user input.

Our proposal included a new solver for soft constraints which is of particular
interest for timetabling problems where the costs in the problem are directly
related to the present values for time and room assignments of classes. We have
proposed a new search algorithm which allows us to find a solution to the prob-
lem (even when it is over-constrained). We have also discussed a special set
of cumulative constraints which, together with the disjoint2 constraint, pro-
cesses stronger constraint propagation.

Our future research will include an extension of the problem solution together
with improvements to the soft constraint solver and search algorithm that have
been described. Also, our approach must be validated using data sets from other
semesters.



We are working on improvements to the search algorithm originally pro-
posed for Purdue timetabling. First results, including experiments on random
problems, can be found in [29].

Our current work also concerns pattern-oriented heuristics. They are aimed
at improving the solution with the help of a pattern matching mechanism based
on the sets of meeting patterns in the problem.

A new approach for making initial student section assignments for courses
with multiple sections is currently under development. The proposal and im-
plementation is based on Carter’s [7] homogeneous sectioning, which tends to
result in fewer classes having joint enrollments with others. This simplifies the
task of finding non-conflicting assignments and appears to be an accurate rep-
resentation when a final sectioning process will take place after construction of
the timetable.

Purdue University currently relies on a completely manual process for con-
structing its timetable. A detailed comparison of results between the approach
described in this paper and the manual process for the full large lecture problem
is one of the next steps in our work. However, timetables are under continual
revision by the timetablers who try to detect any possible problems in the gen-
erated solution. This allows us to extend the system and adjust it to be accepted
by the community.

The primary focus of our future work will be support for making changes
to the generated timetable. Once timetables are published they require many
changes based on additional input. These changes should be incorporated into
the problem solution with minimal impact on any previously generated solution.

We feel that the solution methods used for the large lecture problem should
be directly applicable to construction of the 74 academic unit timetables. Some
solution refinements may be necessary to simplify time assignments for intro-
ductory courses with large numbers of sections. Additional system architecture
work will also be necessary to allow unit timetablers to use local preference files,
and to work cooperatively if there is a high degree of interrelationship between
classes offered by the units. The administration of the university feels this work
is very promising and has funded continuing work based on this approach.
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