
Automated System for University Timetabling

Keith Murray and Tomáš Müller

Purdue University, West Lafayette IN 47907, USA
kmurray@purdue.edu

muller@purdue.edu

1 Introduction

Although university course timetabling is a widely studied topic, the use of
automated timetabling systems is not widespread among large universities. This
is particularly true in the United States, where the state of the art is typically
to roll forward the last like semester’s timetable and make adjustments to room
assignments. University timetabling is a hard problem because of its size and
the complexity of constraints needed to satisfy the demands of students and
instructors. The problem is made harder yet by the need to develop a system
that is easy for everyone involved in the process to use and understand, and for
them to be satisfied with the results.

The system described here, and currently being implementation by Purdue
University, successfully deals both with the issue of solving a large-scale problem
and with addressing many of the human factors required in real applications.

The size of the problem (9,000 classes, 570 rooms, and 39,000 students with
259,000 class requests) has been made more manageable by decomposing it into
a large lecture problem, consisting of centrally scheduled classes serving students
in many disciplines, and multiple departmental problems. This partitioning also
addresses the need to give departmental timetablers ownership of the process,
which is important in a complex organization. Departmental timetablers have
invaluable knowledge about what is and is not important in a solution that would
be extremely difficult to incorporate into a black box solver. It is important to
be able to leverage this knowledge with tools that can help sort through all of
the constraints and costs to find solutions that satisfy user needs. The primary
design goal was therefore to assist academic timetablers with the problem of
building a good timetable, not necessarily finding a true optimal solution.

2 System Architecture

The system has been designed with a completely web-based interface (see Fig. 1)
using the Enterprise Edition of Java 2 (J2EE), Hibernate, and Oracle Database.

The solver is based on an iterative forward search algorithm [3, 5]. This
algorithm is similar to local search methods; however, in contrast to classical
local search techniques, it operates over feasible though not necessarily complete



2

Fig. 1. Screen displaying timetable generated by solver.

solutions. In such a solution, some classes may be left unassigned. Still, all hard
constraints on assigned classes must be satisfied. Such solutions are also easier
to visualize and more meaningful to human users than complete but infeasible
solutions. Because of the iterative character of the algorithm, the solver can
easily start, stop, or continue from any feasible solution, either complete or
incomplete. Moreover, the algorithm is able to cover dynamic aspects of the
minimal perturbation problem [1, 5], allowing the number of changes to the
solution (perturbations) to be kept as small as possible.

3 Critical Aspects of Application

In the course of developing a system that is useable in practice, it was necessary
to confront a number of issues that are not typically addressed in the literature on
timetabling, but which are critical to successful implementation. These included
issues of the “fairness” of the solution across all departments with classes being
timetabled, ability to check and resolve inconsistencies in input data, ease of
introducing changes after a solution has been generated, creating and managing
constraints and other data, and dealing with incomplete demand information for
classes.

3.1 Competitive Behavior

A complicating aspect of real problems in educational timetabling is that there
is competition for preferred times and rooms. Hard and soft constraints placed



3

on the problem are often reflective of this competitive behavior (e.g., limited
instructor time availability, restrictive room requirements).

Hard constraints limit the solution space of the problem to reflect the needs
or desires of those who place them. Soft constraints introduce costs into the
objective function when violated. In either case, the more constraints placed on
the problem by a particular class, instructor, or class offering department, the
greater influence they will have on the solution. The general effect is to weight
the solution in the favor of those who most heavily constrain the problem. This
can create both harder problems to solve and solutions that are perceived as
unfair by other affected groups or individuals. Inequity in the quality of time
and room assignments received by different departments and faculty members
doomed a previous attempt at automating the timetabling process at Purdue [2].

To counteract the tendency of the solution to favor those who place the
most restrictions, a number of market leveling techniques were employed while
modeling and solving the problem. The first was to weight the value of time
preferences inversely proportional to the amount of time affected. A class with
few restrictions on the times it may be taught has those restrictions more heavily
weighted than a class with many restrictions. The intent is to make the total
weight of all time restrictions on any class roughly equal. A second technique
used in the solver was to introduce a balancing constraint. This is a semi-hard
constraint in that it initially requires the classes offered by each department to
be spread equitably across all times available for the class, but is automatically
relaxed to become a cost penalty for poorly distributing time assignments if the
desired distribution is overly constraining. Addressing this aspect of the real
world problem was a key component of gaining user acceptance.

3.2 Interactive Changes

While it was known early that it would be necessary to deal with changes after
an initial solution was found, it became clear the first time the system was used
in practice that an interactive mode for exploring the possibility of changes, and
easily making them, would be necessary. Following the original design philosophy
of wanting to minimize the number of changes needed to a solution [1, 5], an
approach was developed to present all feasible solutions and their costs that can
be reached via a backtracking process of limited depth. The user is allowed to
make the determination of the best tradeoff between accommodating a desired
change and the costs imposed on the rest of the solution with a knowledge of
what those costs will be. A further refinement was to allow some of the hard
constraints to be relaxed in this mode. This means, for instance, that the user
can put a class into a room different from the ones that were initially required.

Figure 2 shows a list of suggestions (nearby feasible solutions) provided to
the user for a given class. The user may either pick one of these alternative so-
lutions, ask the solver to provide additional suggestions by increasing the search
depth (only two changes are allowed by default), or assign the class manually
by selecting one of its possible placements. In this last case, a list of conflicting
classes is shown together with a list of suggestions for resolving these conflicts.



4

Fig. 2. Window displaying current assignment and suggested alternative assignments.

The user may either apply the selected assignment (which will cause all the con-
flicting classes to be unassigned), pick one of the suggestions, or start resolving
the conflicts manually by selecting a new placement for one of the conflicting
classes. This process can continue until all conflicts are resolved manually or a
suggestion resolving all the remaining conflicts is found.

3.3 Data Consistency

Very often, especially during an early stage of the timetabling process, the in-
put data provided by timetablers are inconsistent. This means that the problem
is over-constrained, without any complete feasible solution. A very important
aspect of the timetabling system is therefore an ability to provide enough infor-
mation back to the timetablers describing why the solver is not able to find a
complete solution.

In prior work on this problem [4, 5], a learning technique, called conflict-based
statistics, was developed that helps the solver to escape from a local optimum.



5

This helps to avoid repetitive, unsuitable assignments to a class. In particular,
conflicts caused by a past assignment, along with the assignment that caused
them, are stored in memory. This learned information gathered during the search
is also highly useful in providing the user with relevant data about inconsistencies
and for highlighting difficult situations occurring in the problem.

3.4 Data Management

A major requirement for making the system usable across campus was ease of
managing data on the classes to be timetabled and using that data for other
existing processes. This led to a redesign of the timetabling database from one
focused on a set of classes needing time and room assignments to one that
better reflected the structure of various instructional offerings, with relationships
between lectures, labs, etc. This was particularly valuable for departments with
many offerings of the same class. The course structure could then be used to set
constraints on large numbers of related classes (see Fig. 3).

Fig. 3. Instructional offerings contain component classes in a logical structure reflecting
the relationship among these classes. Constraints may be set on individual classes or
on sets of classes of the same instructional type.

3.5 Student Demand and Sectioning

The primary optimization criterion in this problem is minimizing the number
of conflicts between classes that are selected by students. Other preferences are



6

weighted against the number of student conflicts they may cause. Since demand
data is not available for all students at the time the timetable must be created
(e.g., specific course selections of incoming first year students are not know at
the time the fall timetable is built), it is also necessary to incorporate projected
information on student course selections into the joint demand matrix for classes.
This complicates the initial sectioning process and requires additional algorithms
for sectioning new students consistent with the best solution that has been found.

4 Conclusions

The system demonstrated here provides a complete solution to the course time-
tabling problem at Purdue University. It contains an attractive, intuitive user
interface along with a solver that can be used in a variety of modes, ranging from
a fully automated solution to assisting with manual assignments. Currently, the
system is used by the central scheduling office for the large lecture timetabling
problem. Initial use by departmental timetablers will begin for the spring 2007
term, with full distribution in time for planning the fall 2007 term.

From testing done on the large lecture problem (800 classes, 50 rooms, 86,000
class requests), the solver was proved to be able to stably provide better solu-
tions than the previous manual solutions. For fall 2005 (last semester for which
a manual solution to the large lecture problem was constructed), the solver was
able to provide complete feasible solutions with approximately 1.2% more sat-
isfied class requests (i.e., about 1000 class requests), leaving fewer than 0.6%
class requests violated. It was also able to satisfy more preferences on time and
space. Finally, it takes approximately 10 minutes for the solver to come up with
a complete high quality solution, which is a significant improvement over a week
of manual work.

References

[1] Roman Barták, Tomáš Muller, and Hana Rudová. A new approach to modeling
and solving minimal perturbation problems. In Recent Advances in Constraints,
pages 233–249. Springer Verlag LNAI 3010, 2004.

[2] Edward L. Mooney, Ronald L. Rardin, and W.J. Parmenter. Large scale classroom
scheduling. IIE Transactions, 28:369–378, 1996.

[3] Tomáš Muller. Constraint-based Timetabling. PhD thesis, Charles University in
Prague, Faculty of Mathematics and Physics, 2005.

[4] Tomáš Muller, Roman Barták, and Hana Rudová. Conflict-based statistics. In
EU/ME Workshop on Design and Evaluation of Advanced Hybrid Meta-Heuristics.
2004.

[5] H. Rudová T. Müller, R. Barták. Minimal perturbation problem in course time-
tabling. In Edmund Burke and Michael Trick, editors, Practice And Theory of
Automated Timetabling, Selected Revised Papers, pages 126–146. Springer-Verlag
LNCS 3616, 2005.


