
Comprehensive Approach to Student Sectioning

Tomáš Müller and Keith Murray

Purdue University, West Lafayette IN 47907, USA
muller@unitime.org, kmurray@unitime.org

Abstract. Student sectioning is the problem of assigning students to
particular sections of courses they request while respecting constraints
such as course structures, section limits, and reserved spaces. Students
may also provide preferences on class times and course alternatives. In
this paper, three approaches to this problem are examined and combined
in order to tackle it on a practical level: student sectioning during course
timetabling, batch sectioning after a complete timetable is developed,
and online sectioning for making additional changes to student schedules.
An application and some practical results of the proposed solutions based
on actual data are also included.

1 Introduction

Student sectioning is the problem of assigning students to classes (i.e., individual
sections of a course) while respecting individual student course requests along
with additional constraints (e.g., a student cannot attend two classes that over-
lap in time). The traditional reason for optimizing student sectioning, rather
than students choosing individual classes, is to maximize the number of satis-
fied student course requests. In the on-line version of the problem this means
maintaining a distribution of available space in classes across times needed to ac-
commodate requests by students who come later in the process. To meet modern
expectations, optimizing student sectioning must also consider other preferences
and priorities of students while creating their class schedules. This is an impor-
tant problem for institutions offering many courses with multiple sections.

Academic timetabling problems are frequently categorized as either school
timetabling, course timetabling, or exam timetabling [17]. Student sectioning
usually resides outside of this categorization since the task is not to allocate a
set of events (e.g., classes or exams across time and space); however, some form
of student sectioning may be involved in a demand-driven course timetabling
process in order to minimize the number of potential student conflicts between
classes [5, 12, 18]. In this case, student sectioning is necessary to define the
number of students in common for each pair of classes.

In practice, it is not sufficient to consider student sectioning only as a sub-
problem of timetabling. Especially when the total demand for classes is not
known while creating the timetable, it may be necessary to section additional
students at a later time. In a distributed timetabling system such as used in
this work [14], there may also be sectioning issues that arise (e.g., respecting

2

preferences) while solving multiple sub-problems that involve the same students.
This is particularly an issue when they are solved over a period of several weeks
during which changes occur in class offerings and student demand. In an era
where students expect 24/7 service, there is also a need to address schedule
changes both efficiently and without jeopardizing the ability of latter enrolling
students to receive courses they require.

A variety of strategies for sectioning students have been discussed in the
literature on educational timetabling. Carter and Laporte [6] and Schaerf [17]
provide a good overview of previous work on the sectioning problem. Aspects
of several different approaches to sectioning are of interest when developing a
system for constructing both course timetables and individual student schedules.
Aubin and Ferland [9] considered the problem of sectioning, or grouping, stu-
dents during the timetabling process. They generated an initial timetable with
students assigned to sections, then applied an iterative process to adjust the
timetable and student groupings successively until no further improvement was
found. Hertz and Robert [8] adopted a similar approach, decomposing the course
scheduling problem into a series of assignment type subproblems (timetabling,
sectioning, and room assignment) that were iterated on while an increasing num-
ber of constraints were considered. Banks, et al. [2] used subset constraints be-
tween sections in a CSP formulation of the timetabling problem to avoid conflicts
between sets of student course choices. Amintoosi and Haddadnia [1] proposed
a fuzzy clustering algorithm to create an initial sectioning prior to timetabling
a set of classes. The primary aim of considering sectioning in all of these cases
was to improve the balance between class enrollments and to minimize conflicts
preventing assignment of students to a full set of selected courses.

Student sectioning has also been considered as a separate problem when ap-
plied to a fixed timetable. Laporte and Desroches [10] implemented a branch
and bound procedure that first assigned students to sections without consider-
ing section enrollments or room capacities and then iteratively modified these
assignments to reduce the imbalance in section sizes and mismatches with as-
signed room sizes. Sabin and Winter [15] proposed a heuristic which assigned
weights to each student’s set of course choices to assess its complexity. Those
with the greatest complexity were scheduled first.

The idea of accommodating student preferences during the sectioning process
has also received attention. In an early work, Busam [4] presented an algorithm
for assignment of students to classes in a fixed timetable that allowed for stu-
dent section preferences, if consistent with the objective of balanced sections, by
ordering assignments based on the number of students preferring each section.
More recently, Feldman and Golumbic [7] introduced priorities on constraints in
the student sectioning problem indicating which schedules were preferred over
others by the student. A number of algorithms were then presented for finding
the the best schedule minimizing violation of student priorities. Sampson and
Weiss [16] furthered the idea of accommodating student preferences in both the
timetabling and sectioning problems by introducing a heuristic approach based
on each student’s priority ordering of the courses and sections they wished to

3

enroll in. The timetable and section assignments were built by an algorithm
maximizing the weighted value of assignments made.

In this paper, student sectioning processes will be considered both as a com-
ponent of the timetable construction process and as a means to optimize stu-
dent preferences. The general student sectioning problem is first described in
the following section. Next, a three phase approach to this problem is outlined
which considers student class assignments during and after construction of the
timetable. In the first phase, a course timetable is created while minimization of
potential student conflicts is used as one of the optimization criteria. In the next
phase, after a timetable for the whole university has been completed, all reg-
istered students are enrolled into sections of their requested courses. Projected
student requests are used in this step in order to anticipate class needs of incom-
ing, but not yet registered, students. In the final phase, all students are free to
select or change class schedules using an online interface. During this process,
students are sectioned in the order they access the system; however, the pro-
posed technique avoids using all of the space available in sections at times that
are expected to be required by students who will register later in the process
(e.g., first year students and transfers). The last section of this paper is devoted
to experimental results. Here, several evaluations of the proposed approach are
presented based on actual data from Purdue University.

2 Problem Model

Course demand data may be collected from students in a format similar to that
shown in Figure 1. Each student is able to create a list of requested courses
in his or her order of priority. Additional preferences may also be included for
alternative courses, free time requests, and wait-listing on courses.

Fig. 1. Student course demand example

In the example shown in Figure 1, the student wishes to attend four courses
and have a free time block between 7:30 am and 8:30 am on Mondays, Wednes-
days and Fridays. The ordering of the requests indicates their importance to

4

the student. This means that if a student can attend only one of two requested
courses, e.g., because the only available sections of these courses overlap in time,
he should be enrolled into the course with a higher priority. The same principle
applies to free times. In the example above, the student would still wish to at-
tend the English or Biology courses (1st and 2nd course requests) even if they
overlap with the requested free time (3rd request), however, he would not attend
the Communication or Math course during that time (4th and 5th request).

At Purdue University most classes are offered during standard time blocks.
For instance, a 3 hour (150 minutes excluding breaks) class is either offered as
one three hour long meeting, two meetings of 75 minutes that take place on
Tuesday and Thursday with the same start time, or three meetings on Monday,
Wednesday, and Friday starting at the same time. Possible starting times are set
so that time use is maximized, without leaving unnecessary empty time windows
in the rooms. In the model, free time requests can also be specified using the
same standardized time blocks. This way the amount of time blocked by each
free time request roughly corresponds with amount of time needed by a course. If
a student desires an entire morning free he or she would need to use multiple free
time requests, lowering the priorities on subsequent course requests. This gives
other students with fewer free time requirements a better chance of receiving
requested courses since they carry a higher priority. There is thus an explicit
trade-off between a higher probability of receiving desired courses or a higher
probability of receiving desired free times. Each student is free to set priorities
to fit his or her needs.

The wait-list preferences (Waitlist toggle on Figure 1) indicate whether a
student wishes to be assigned to the appropriate wait-list for a course if he or
she cannot be enrolled in it, e.g., because of limited space availability.

Each request for a course that a student does not wish to be on a wait-
list for can have acceptable alternative courses designated on the same line.
This means that if the student cannot be enrolled in the requested course, he
or she can be enrolled in the listed alternative course instead. A list of general
alternative course requests can be provided as well. These serve as alternatives to
all provided course requests that are not wait-listed and can help the student to
obtain a complete schedule with the desired number of courses. The intended use
of these two types of alternatives is that a course meeting a similar requirement
may be taken in place of a given course listed on the same line (a student may
not be enrolled in both a course and its alternative), additional optional courses
that help the student to create a complete schedule with the desired number of
courses or credit hours may be listed in the Alternative Course Requests section.

The problem is modeled as a Constraint Satisfaction and Optimization Prob-
lem (CSOP). Each request by a student for a course (including any alternatives)
or a free time is represented as a variable. An assignment to a course request is
a list of sections of the course (or alternative) into which the student is to be
enrolled. Some combinations of sections of a course may not be allowed by the
defined course structure (e.g., the only allowable combinations of sections for
a course with two lectures and four laboratories may be the first lecture taken

5

with the first or second laboratory, or the second lecture taken with the third or
fourth laboratory). An assignment of a free time request is the requested time
block. A free time may be left unassigned in the case where the student needs
to attend a section of a course with higher priority that overlaps with the free
time.

The problem also consists of the following constraints:

– Each section has a limit on the number of students that can be enrolled in
it. Some sections can be marked as unlimited.

– Each course has a course structure defining the valid combinations of sections
into which a student can be enrolled, these sections cannot overlap in time.

– A student cannot attend two courses that have sections that are overlapping
in time. He or she also cannot attend a section that is overlapping with an
assigned free time request.

– Reservations can be defined on courses and/or sections. Each course reserva-
tion consists of a course, a list of students that meet the reservation criteria
(e.g., students in a program of study the course is designed for) and the num-
ber of students that can be enrolled into the course using this reservation.
Similarly, a section reservation consists of a section, a list of students, and
the number of students that can be enrolled using this reservation.

– An alternative course request can have an assignment only if there is an
unassigned (non-alternative) course request of the same student that is not
wait-listed. Only one alternative course request can be assigned in place of
each such unassigned (non-alternative) course request. Free time requests do
not currently have any alternatives.

– A course or free time request can be left unassigned only when there is
no available assignment for the request (i.e., each assignment violates the
available limit of a section, a reservation, or it overlaps in time with an
assigned request of higher priority by the same student).

A solution of the student sectioning problem is a most complete set of assign-
ments of requests that meets the above constraints. Among these, the aim is to
maximize the overall priority of the assignments together with minimizing the
use of course alternatives provided by students (i.e., courses that are listed on
the same line as the requested course on Figure 1.). Both of these objectives are
modeled by the maximization of a single weight that is computed for each as-
signment of a request. Thus weight(a ∈ dom(R)) = 0.9prior(R)× 0.5alt(a), where
prior(R) is the priority of the requested course or free time, and alt(a) is the
ordering of an alternate assignment a to a request R. The value of a is zero if the
student is enrolled into the requested course or free time, 1 if he/she is enrolled
into the first provided alternative course, 2 if into the second provided alterna-
tive course, etc. In order to ensure that general alternative course requests (i.e.,
courses listed in the Alternative Course Requests section of Figure 1.) will have
a lower weight than normal requests, the priority assigned to each alternative
course requests is increased by the number of ordinary requests (e.g., request A1
from Figure 1 has priority of 6, A2 has priority of 7).

6

The second criteria that is being considered is minimization of the overall
number of distance student conflicts. A distance student conflict occurs between
two sections attended by the student that are back-to-back in time and located
in rooms that are too far a part. In these tests, the limit on distance between two
rooms is set to 670 meters for sections having a break of interval of 10 minutes
or less between, 1000 meters if there are more than 10 minutes but less then 20
minutes between. There are no distance conflicts between sections that have an
interval of more than 20 minutes between them.

3 Initial Sectioning

During the construction of the course timetable, course demands of pre-registered
students are considered. Since many students are anticipated to register later in
the process, projected course demands are considered as well. These are deducted
from the last-like semester enrollments, e.g., fall 2006 course enrollment patterns
are used to predict fall 2007 course demands. Minimization of potential student
conflicts is a major optimization criteria of the timetabling solver. Two classes
are conflicting, i.e., they cannot be attended by the same students, if they are
overlapping in time or if they are back-to-back (the second class starts just after
the first ends) and placed in rooms that are too far apart.

Before the course timetabling solver is started, an initial sectioning of stu-
dents into classes is processed. However, it is still possible to improve on the
number of student conflicts in the solution. This is accomplished by moving stu-
dents between alternative classes of the same course during or after the search
for a timetabling solution.

This initial sectioning approach and its application to Purdue University
course timetabling problem is discussed in more details in earlier work [14].

4 Batch Sectioning

After the course timetable for the entire university has been constructed, the
batch student sectioning process is executed. In this phase, all pre-registered
students are assigned to specific sections (classes) of courses in order to mini-
mize conflicts and additional preferences provided by these students are included
in the optimization criteria. Additional constraints deducted from the course
structure, as well as reservations on space in particular courses or classes, are
respected in this process. Students who are not able to enroll in a requested
course (or alternate) are also enrolled to the appropriate wait-lists.

This batch sectioning process also makes use of the projected student demand
to compute an expected number of students requiring each class for the subse-
quent online sectioning phase. Pre-registered students take precedence over pro-
jected student demand however. This means that a pre-registered student cannot
be bumped out a requested course in favor of a projected student, but he or she
may be assigned to a class at a time that does not prevent projected students
from taking the course as well. Based on the computed solution, pre-registered

7

students are assigned to classes and wait-lists, and the projected student course
demands are used to identify space in each section to be reserved for students
that are not yet registered. This information is used in the online sectioning
phase to direct students away from sections that are expected to be taken by
later enrolling students.

4.1 Batch Sectioning Algorithm

Batch sectioning is implemented using the Constraint Solver Library initially
developed for solution of the timetabling problem [11]. It is based on the iterative
forward search algorithm [12]. This algorithm is similar to local search methods;
however, in contrast to classical local search techniques, it operates over feasible,
though not necessarily complete, solutions. In these solutions some variables may
be left unassigned, but all hard constraints must be satisfied.

The algorithm works in phases during which it selects potential assignments
from one of the six neighborhoods described below. When there are no more as-
signments to select within the current neighborhood, the search progresses to the
next neighborhood. The solver starts with (NB&B), and proceeds through neigh-
borhoods in the order listed. After the last neighborhood (NResect) is reached
and exhausted, the search returns to (NSwap) and continues in this manner. The
search is stopped when a set time limit is reached.

NB&B : All students are taken in order determined by the average number
of section choices available for the courses they have selected (students with
fewer choices first). A branch & bound technique is used to evaluate the best
possible assignment of each student to available classes. Assignments made to
students previously sectioned are not changed. Course and free time requests are
considered in order based on the students’ priorities, and the search is bounded
by the best schedule found so far. This phase is similar to the online sectioning
algorithm discussed at greater length in Section 5.1.

NSwap: All students who do not have a complete schedule (i.e., are not en-
rolled in the desired number of courses) are taken in random order. For each
of these students, all unassigned course and free time requests are considered,
and all possible section assignments are evaluated. The search looks for an im-
proving assignment that has either no conflict with other assigned requests, or
where any conflicting requests can be reassigned with alternative non-conflicting
assignments. Conflicting requests include other assignments of the student that
overlap in time with the new assignment, or assignments of other students that
must be changed in order to satisfy the new assignment (e.g., due to a section
limit). Among all possible new assignments, the one which improves the overall
objective the most is selected along with the computed reassignments.

NIfs: Selections of a variable and an associated value are used for a number
of iterations proportional to the number of unassigned requests. In each step, an
unassigned request is first selected randomly. For each such request, all possible
enrollments are enumerated and the best one is selected and assigned. This may
cause other conflicting requests to be unassigned. If there is a choice of how
to resolve a conflict (e.g., what request to unassign in order to free a space

8

in a section), a request with lowest weight is always selected. The quality of
a selected assignment is computed using a weighted sum of the optimization
criteria including the number of assignments that need to be unassigned in order
to assign the selected value. Conflict-based Statistics [13] is used during this
process to prevent repetitive assignments of the same values by memorizing
conflicts which have occurred during the search together with their frequency
and the assignments that caused them.

NBt: Both assigned and unassigned requests are considered in this phase. For
each (taken in random order) an attempt is made to find an improving assign-
ment (including potential reassignments of other requests) using a backtracking
technique of limited depth that tries to resolve conflicting assignments. The
depth limit is usually set to three, which means that three other requests can be
reassigned together with the new assignment of the selected request. Unlike the
previous neighborhood, no conflicting assignment can be left unassigned, and
the search is bounded by the value of the current assignment and/or the best
improvement found so far.

NUn: All requests by a student (or group of students) are unassigned. Stu-
dents are selected randomly, however, problematic students are selected with a
higher probability. A student is identified as problematic if a request by that stu-
dent is preventing some other student from enrolling in a course but the NSwap

was unable to find a non-conflicting reassignment. After an unassignment of a
student, the same neighbourhood is used with a probability of 90%, otherwise
the search moves to the next neighborhood.

NResect: The same technique as in NB&B is used to reassign students with-
out a complete schedule. The students are taken in random order, however, all
students that were unassigned in the previous step are considered only after
all other students are processed. Once done, the search continues with NSwap

neighborhood.
When both real student requests (i.e., requests from students who have pre-

registered) and projected student requests (i.e., requests estimated based on last-
like term student enrollments) are sectioned together, the first cycle of the above
algorithm is only carried out on the real student requests. This ensures that no
real student request is left unassigned because of projected requests. A second
cycle is then carried out with projected requests using the NB&B neighborhood
on top of the real student requests. The search continues with both types of
requests. In the NIfs phase it is also not permitted to unassign a real student
request due to an assignment of a projected student request.

The projected student requests are also weighted using the projected course
enrollment sizes. For instance, if there is a course that is expected to have 20
students, there are 10 pre-registered students requesting this course, and there
were 16 students enrolled in the course in the previous semester, each projected
request of this course is weighted by 0.625 (there are 16 projected requests to
cover remaining 10 spaces of the course, therefore 10/16). This means that each
such projected request blocks only 0.625 of the limit of each section of the course
into which it is assigned.

9

5 Online Sectioning

After batch sectioning takes place, students can make changes to their schedules
using an online interface. During this phase, pre-registered students are allowed
to remove themselves from requested courses or to request additional courses
and have a new sectioning solution provided in real-time. They can also change
their class enrollments if there are other classes of the course that are available
or wait-list themselves to classes that are not currently available. Wait-lists are
automatically processed as space is freed in courses and classes. Changes in
the course timetable are also possible, potentiality causing some re-sectioning of
enrolled students.

New students use the same interface as pre-registered students. They begin
by entering an initial set of course requests, based on which they are sectioned to
classes in real-time. If they wish to make any changes, they may then continue
in the on-line sectioning the same as continuing students (see Fig. 2).

Fig. 2. Student class enrollments with possible choices

As students submit schedule requests, each course is ranked in priority order.
During real-time student sectioning, the search employs a backtracking process
considering possible assignments beginning with those classes associated with
the student’s highest priority course. As it evaluates each possible assignment,
the algorithm compares available space with the space expected to be taken by
later enrolling students for each class. The difference between available space
and the expected need for each class is used to direct students away from class
assignments that would result in excess demand; however, in no case is an eli-
gible student blocked from scheduling a course offering as a result of expected

10

future demand. As students are assigned to specific classes during the sectioning
process, the expected demand for each class is adjusted to reflect the assignment.
Use of historical data to predict distributions in an on-line scheduling application
has also been discussed by Bent and Van Hentenryck [3].

5.1 Online Sectioning Algorithm

Online student sectioning is driven by two numbers that are computed for each
section from the results of the earlier batch sectioning process. For each course,
the section assignments of projected students are analyzed along with all other
possible assignments that exist using only those spaces available after all pre-
registered students are assigned. Assignments of projected students into other
courses are fixed.

Held Space: Space occupied by projected students in the section, i.e.,

Sheld =
∑

r∈ProjRq(Course(S)),S∈val(r) wr,

where wr is a weight of projected student request r for a course with section
S, where the projected student is enrolled into the section S. Note that pro-
jected student requests are weighted proportionally to the space available in the
course (projected size of the course decreased by the number requests from pre-
registered students for the course), e.g., if there are 20 spaces available and 10
projected student requests, each request is weighted by 2.

Expected Space: Expresses availability of the section for projected students.
Each projected student enrolled in the course containing this section (Course(S)
where S is the section) contributes to this number by the portion of the number
of available non-conflicting assignments into the course that contain this section
among all available non-conflicting assignments into the course, multiplied by
the weight of the request.

Sexpect =
∑

r∈ProjRq(Course(S))
|{a|a∈dom(r),conflict(r)=∅,S∈a}|
|{a|a∈dom(r),conflict(r)=∅}| wr

For example, if a student can attend either Lecture 1 or Lecture 2 of a course,
1/2 of the request’s weight is added to both these lectures.

During online sectioning, students are sectioned one by one as they use the
online interface to alter their requirements. Assignments made to students pre-
viously sectioned are not changed. A branch & bound technique considering all
of a student’s requests is used to find the best schedule for the student. The held
and expected space counters are used to avoid sections with greater expected
demand than available space. These counters are updated after a student is sec-
tioned (i.e., the held space counter is decreased by one for sections the student
is enrolled into, and the expected space counter of every section of a course the
student is enrolled into is decreased by the proportion of available non-conflicting
assignments of the student into the course to all non-conflicting assignments).

The penalty for using a section for a student that is not yet assigned to the
course is computed as

penaltynew(S) = Sexpect−avail(S)
limit(S) ,

11

where avail(S) is the available space in the section S and limit(S) is the section
limit. For students that are using the online interface to change their assignment,
the penalty is

penaltyresect(S) = Sheld−avail(S)
limit(S) .

It is preferable to use sections that have a space available that is not occupied
by students we expect to enroll later in the process. Held and expected space
counters are not updated when a student who is already enrolled in the course
is re-sectioned (he or she is assigned to a different set of sections than before).

procedure online(student, best, current)
// parameters: a student and the best and current solution (student’s schedule)
if not better (bound (current),best) then

return best; // check bound for the current solution
end if;
request = nextRequest (student, current); // next request to be assigned

// in the order of their priority; alternative course requests can be returned
// only if there is appropriate non-alternative request unassigned in current

if not request then
// when current is complete (student will get the requested number of courses)
// or cannot be extended (e.g., no more requests), save to best and return
if better (current,best) then best = current;
return best;

end if;
hasEnrl = false; // to be true if there is an available non-conflicting enrollment
for each enrollment in domain (request) do

// for each enrollment of the request in the order of their section penalties
if available (enrollment) and not conflict (current, enrollment) then

// if all sections are available and not overlapping with current solution
hasEnrl = true;
// try to extend the current solution with this enrollment
best = online(current ∪ {request/enrollment}, best);

end if;
end for;
if not hasEnrl then

// there is no available not-conflicting assignment → leave it unassigned
best = online(current ∪ {request/∅}, best);

end if;
return best;

end procedure

Fig. 3. Pseudo-code of the online sectioning algorithm.

The backtracking process (see Figure 3) tries to assign all course requests by
a student in their order of priority. For each request it tries various assignments
(sets of available sections not conflicting with the higher priority courses) in order
based on the number of distance conflicts and the above penalties (the penalty

12

for an assignment is a sum of penalties of its sections). A requested course can be
left unassigned only if there is no available assignment not conflicting with one of
higher priority. Free time requests are treated in the same way as course requests,
except when the solver would be forced to pick a section that is fully reserved
(penalty(S) >= 0) for students that are expected to come later in the process.
This means that when there is an assignment ignoring the free time request using
sections that have negative penalties, and all assignments respecting the free time
require sections with non-negative penalties, the free time is left unassigned.
This rule is quite important in order to prevent students from trying to trick
the system into assigning them classes at times that need to be reserved for
incoming students. Overall, the process searches for the most complete schedule
that minimizes student distance conflicts and section penalties.

When a student is using the online interface to change existing course enroll-
ments, some sections with penalties higher than a given limit may be prohibited.
This limit can, for instance, be based on the penalty of the best possible assign-
ment of the student into the course (e.g., a student may be prohibited from re-
ceiving sections with a penalty greater than 1.5 times the best possible penalty).
It is also possible to disallow use of sections with positive penalties (i.e., sections
with more expected demand than available space), especially if the student can
be enrolled in the course such that no section with a positive penalty is used.

For a course with only two sections, it is possible to show that the proposed
algorithm cannot make a wrong decision when sectioning students with the exact
same requests as the projected students that were used to compute the expected
space counters. The only case when it can make a bad decision is when a student
that can attend both sections is enrolled in a section where all remaining space
needs to be available for not-yet-sectioned students that can only attend that
section. This would mean that the expected number of students is greater than
available space in this section (there is 1 expected student for each yet to be
sectioned student than can only attend this section, plus 1/2 for the student
being sectioned). However, this means that the other section has fewer expected
students than the available space in that section, since the sum of the expected
students of these two sections is always equal or less than the total available
space in these two sections. The proposed criterion used for selection of a section
among sections that are available for that student would, therefore, not take that
section and make the bad decision in the first place.

The problem is more complicated for courses with many sections as well as
courses that are composed of multiple instructional types (e.g., a lecture and a
lab), but empirical experiments show that the proposed approach returns very
decent results. See chapter 6.1 for more details.

6 Experiments

In this section experiments using data from Purdue University are presented.
These data were gathered from the student registration process for Fall 2007
semester, using a course timetable of over 9,000 sections and 570 rooms. There

13

are 187,847 course requests from 36,117 pre-registered students. Projections
based on the Fall 2006 student course enrollments contain 185,494 course re-
quests from 38,740 students. Unfortunately, since the proposed system is still
not used in practice, there was no means available to include alternatives, free
time requests, or reservations in the test data.

All runs were performed on an Apple Mac Pro server machine with two dual
core 3.0 GHz Intel Xeon processors and 4 GB of RAM, using Mac Os X and Java
1.5. The time limit for batch sectioning runs was 8 hours. Branch and bound
during online sectioning runs was limited to 1 second per student. On average,
the online sectioning algorithm was able to section about 12 students per second.

6.1 Batch versus Online Sectioning

Table 1 compares results achieved using the batch and online sectioning tech-
niques described above. The tests were performed either on all projected students
(i.e., student requests from Fall 2006 semester) or on all real (pre-registered) stu-
dents (i.e., the actual students requests for Fall 2007 semester). All online tests
(with both projected and real students) are based on expected and held space
counters computed from the batch sectioning run on projected students with
the smallest number of unassigned course requests. In this run, there were 316
unassigned course requests and 1,709 student distance conflicts.

Table 1. Batch and online sectioning results. Average and RMS of the number of
unassigned requests and student distance conflicts from 10 independent runs are shown.

Problem Projected Students Real Students

(Fall 2006) (Fall 2007)

Batch Sectioning

Unassigned course requests (U) 317.40± 1.58 264.56± 1.88

Distance conflicts (D) 1704.0± 15.5 1675.9± 17.1

Online Sectioning U 545.20± 13.54 772.45± 20.34

Random order D 1705.5± 18.7 1663.5± 16.2

Online Sectioning U 744.00± 12.46 1043.70± 15.00

Students with more choices first D 1802.2± 15.6 1709.6± 11.8

Online Sectioning U 461.57± 3.59 597.00± 4.27

Students with fewer choices first D 1729.8± 2.8 1711.3± 4.0

Online Section Balancing U 1538.07± 23.78 1481.90± 27.39

Random order, no exp/held space D 1696.4± 16.3 1581.3± 12.2

Online Section Balancing U 1753.36± 13.85 1721.40± 23.44

Students with more choices first D 1739.8± 19.4 1617.7± 5.7

Online Section Balancing U 1288.21± 11.07 1249.90± 8.37

Students with fewer choices first D 1747.2± 5.8 1663.6± 8.7

14

The unassigned course requests in batch sectioning runs are primarily caused
by inconsistencies between student requests and courses available. For projected
students, this is the result of changes in courses offered between the Fall 2006 and
Fall 2007 schedules. For real students these inconsistencies are mostly caused by
capacity limits imposed on courses and sections and the quality of the timetable
(i.e., are there adequate non-overlapping time combinations between requested
courses to accommodate student demand). To minimize the number unassigned
requests due to the timetable, it is very important to consider projected as well
as pre-registered students during its construction using an initial sectioning as
discussed in Section 3.

Since the schedule of each student in online sectioning depends on the sec-
tioning of previous students (e.g., some sections may be completely filled and no
longer available), the overall result may depend greatly on the order in which
students are processed. To better understand the effects of ordering, three dif-
ferent scenarios are presented in Table 1. Students are either (1) sectioned in
a completely random order, (2) students with more choices are sectioned first,
(3) or students with fewer choices are sectioned first. The number of choices is
an estimate of how many different schedules are available to each student when
all sections are available. The second case represents the worst scenario since
students with fewer initial choices are most adversely impacted by a specific
class being filled at the time they are sectioned. The result is a smaller number
of students able to enroll in all courses required to obtain a complete schedule.

The tests titled Online Section Balancing do not use any pre-computed infor-
mation from a previous batch sectioning run on projected students (i.e., expected
and held space counters are zero for all sections at the beginning of the section-
ing). Students are processed one by one in the same manner as online sectioning,
with expected and held space counters being updated after each student. This
helps the process to balance the available space in the sections during the run.

As expected, batch sectioning results in the fewest unassigned requests; how-
ever, online sectioning achieves stable and acceptable results as well. The dif-
ferences when using projected and real students appear to be caused primarily
by the discrepancies between projected and real student demand (both cases
are based on expected space determined from the batch sectioning of projected
students). Having good projections is therefore quite important. It should also
be noted that, in practice, only students who did not register before the batch
sectioning process, which is run when the university timetable is created and
published, will need to be sectioned using the online process. The overall num-
ber of unassigned course requests will, therefore, be smaller. This scenario is
discussed in more detail in Section 6.3.

Overall, every run of online sectioning performed better than any run of
online section balancing (i.e., online sectioning without pre-computed expected
space counters). The advantage of using pre-computed information on projected
students from batch during online sectioning is clearly visible.

15

6.2 Student Selection Simulation

In the following experiments, an attempt was made to simulate students having
free choice to select sections manually. Since students often have a preference
for some times over others, these preferences were modeled based on a set of
distributions that correspond to observed behavior. The same algorithm as in
online sectioning was used (branch&bound with students taken one by one in
a given order), but instead of minimizing sectioning penalties, the algorithm
maximizes the preference values on section times for each student. The following
distributions were used to create student time preferences:

Mid-Day: For each student, all possible time slots were ordered by drawing
them one by one using roulette wheel selection where each time slot has the
weight denoted in Table 2. Times before 7:30 am or after 5:30 pm have weight 1.

Table 2. Mid-Day time preferences

7:30a 8:30a 9:30a 10:30a 11:30a 12:30p 1:30p 2:30p 3:30p 4:30p

Mon 1 4 7 10 10 5 8 8 6 3

Tue 2 4 7 10 10 5 8 8 6 3

Wed 2 4 7 10 10 5 8 8 6 3

Thu 2 4 7 10 10 5 8 8 6 3

Fri 2 4 7 10 10 5 4 3 2 1

This gives times during the middle of the day a higher probability of being
preferred than early or late times. The penalty for enrolling a student in a section
was computed as the average position of the time slots that a section overlaps
with. The overall penalty of all sections in a student’s schedule was minimized
by use of the branch & bound technique (together with minimization of distance
conflicts).

Uniform: The same technique as for Mid-Day preferences was used, but all
times were drawn with the same weight, i.e.,

Weight(time)Uniform = 1.

Early/Late: For each student, times were drawn with weights inverse to Mid-
Day weights, i.e.,

Weight(time)Early/Late = 11−Weight(time)Mid−Day.

Figure 4 shows a comparison of the overall number of unassigned course re-
quests for batch sectioning, online sectioning, online section balancing, and the
results obtained using student time preferences created from the distributions
described above. The Uniform distribution returns similar results to online sec-
tion balancing and, in some sense, it can be seen as a form of section balancing.

16

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

1.2%

1.4%

1.6%

1.8%

2.0%

2.2%

2.4%

Batch Real-Time Section
Balancing

Uniform Mid-Day Early/Late
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Expected Students (Random order)

Real Students (Random order)
A

ve
ra

g
e

n
u

m
b

er
 o

f
u

n
as

si
g

n
ed

 c
o

u
rs

e
re

q
u

es
ts

 [
%

]

Student Time Preferences

No pre-computed expected/held space

With pre-computed
expected/held space

A
ve

ra
g

e
n

u
m

b
er

 o
f

u
n

as
si

g
n

ed
 c

o
u

rs
e

re
q

u
es

ts

Fig. 4. Comparison of batch sectioning, online sectioning, and student selection sim-
ulation on the number of unassigned requests. Average results from 10 independent
runs are presented, students are taken in random order in online sectioning.

Mid-day and Early/Late returned worse results than online sectioning. This is
not surprising since any preference for particular times or sections results in
their being filled early and not available to later registering students who may
need particular section combinations to obtain a complete schedule with all re-
quested courses at non-overlapping times. The difference between Mid-day and
Early/Late is the result of mismatch in the distribution of sections in the course
timetable with student time preferences. The timetable has more classes offered
during the middle of the day than on early morning or during evenings due to
faculty time preferences.

6.3 Real-world Scenario

In practice not all students are expected to be sectioned using either batch
or online sectioning alone. Only students who are already registered will be
sectioned using the batch process. Afterward, any additional students would
need to be registered using the online sectioning on top of the solution from the
batch sectioning phase. This scenario is modeled in the following experiment.

17

In the results displayed in Figure 5, the actual pre-registered students were
split into two groups. The first group of students was sectioned using batch sec-
tioning. (Projected student course requests computed from Fall 2006 student
enrollments were included in this process.) The remaining students were then
sectioned on top of the batch sectioning solution, using expected space section
counters computed from the projected students. In the column labeled Freshmen
all students in their second or later semester of study were sectioned using batch
sectioning and all first semester freshmen students were sectioned using online
sectioning. The reason for such a test is that freshmen students are typically not
yet on the campus during the Fall course timetabling and batch student section-
ing period so they cannot pre-register themselves. The tests labeled Fm+10%,
Fm+20%, ... Fm+75%, present scenarios where the given percentage of other
(randomly selected) students were also excluded in the batch sectioning process,
and therefore had to be sectioned during the online sectioning phase. At Purdue,
the number of returning students who do not pre-register for various reasons is
expected to be between 20% and 30%. For comparison purposes, cases where
all students are sectioned solely using batch or online sectioning are included in
Figure 5 in the columns labeled All Batch and All Online respectively.

73.2%

65.9%

58.6%

51.3%

43.9%

36.6%

18.3%

0.0%

99.9%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

All
Batch

Fresh
men

Fm
+10%

Fm
+20%

Fm
+30%

Fm
+40%

Fm
+50%

Fm
+75%

All
Online

0k
10k
20k
30k
40k
50k
60k
70k
80k
90k
100k
110k
120k
130k
140k
150k
160k
170k
180k

Real-Time

Batch

A
ve

ra
g

e
n

u
m

b
er

 o
f

as
si

g
n

ed
 c

o
u

rs
e

re
q

u
es

ts
 [

%
]

A
ve

ra
g

e
n

u
m

b
er

 o
f

as
si

g
n

ed
 c

o
u

rs
e

re
q

u
es

ts

552.7 567.2 571.1 571.5

772.5

439.4

631.7

715.5

0.0%

0.1%

0.2%

0.3%

0.4%

All
Batch

Fresh
men

Fm
+10%

Fm
+20%

Fm
+30%

Fm
+40%

Fm
+50%

Fm
+75%

All
Online

0

100

200

300

400

500

600

700

800
Real-Time

Batch

A
ve

ra
g

e
n

u
m

b
er

 o
f

u
n

as
si

g
n

ed
 c

o
u

rs
e

re
q

u
es

ts
 [

%
]

A
ve

ra
g

e
n

u
m

b
er

 o
f

u
n

as
si

g
n

ed
 c

o
u

rs
e

re
q

u
es

ts

263.7

Fig. 5. Combined batch and online sectioning: course requests assigned using batch
vs. online (left), unassigned course request detail (right). Average results from 10 inde-
pendent runs are presented, students were taken in random order in online sectioning.

The results again show the fewest unassigned course requests for batch sec-
tioning, which is to be expected since all requests can be included in the opti-
mization, then monotonically increasing as a greater percentage of students are
sectioned by the online process. There appears to be a disproportionately large
increase in the number of unassigned students when the first semester freshmen
are sectioned online compared to increasing the total number of students sec-
tioned online. The reasons for this are not fully understood, but it appears to be

18

due at least in part to the higher proportion of freshmen in large multi-section
courses and the fact that these courses rarely have excess capacity.

6.4 Online Sectioning with Student Choice

Experiments were also conducted to determine the compatibility of the online
sectioning approach with providing some degree of choice for students to se-
lect different classes. Since the online sectioning algorithm is based on reserving
spaces in classes with high expected future demand, the question becomes what
the effect is of allowing students to choose among available sections that have
an expected demand within some reasonable bounds at the time as he or she is
creating or changing a schedule.

912.7 959.9
815.0 821.2

861.7

0.0%

0.1%

0.2%

0.3%

0.4%

0.5%

0.6%

0.7%

0.8%

0.9%

1.0%

1.1%

1.2%

1.3%

1.4%

1.5%

1.6%

1.7%

Online
Sectioning

5%
Limit

10%
Limit

25%
Limit

50%
Limit

Limit
Zero

Mid-Day
Preference

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

2750

3000

A
ve

ra
g

e
n

u
m

b
er

 o
f

u
n

as
si

g
n

ed
 c

o
u

rs
e

re
q

u
es

ts
 [

%
]

A
ve

ra
g

e
n

u
m

b
er

 o
f

u
n

as
si

g
n

ed
 c

o
u

rs
e

re
q

u
es

ts

756.0

3068.3

88.3%

93.4%93.7%93.9%

75.6%

91.9%

52.9%

57.1%
59.1%

62.5%

65.2% 66.6%

86.2%

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

Online
Sectioning

5%
Limit

10%
Limit

25%
Limit

50%
Limit

Limit
Zero

Mid-Day
Preference

Online Penalties

Mid-Day Preferences
F

u
lf

ill
m

en
t

o
f

p
en

al
ti

es
 a

n
d

 p
re

fe
re

n
ce

s
[%

]

Fig. 6. Online sectioning with student choices: unassigned course requests (left), ful-
filment of online penalties versus student preferences of Mid-Day distribution (right).
Average results from 10 independent runs are presented, students in random order.

In the results presented in Figure 6, the online sectioning algorithm was al-
tered as follows. For each student, it is first used to find the best solution using
the online penalties (expected space counters). Then for each requested course,
a limit on this penalty is created based on the online penalty achieved in the
computed solution. In the next step, a schedule for the student is computed
minimizing the Mid-Day preferences (as in the results presented in Section 6.2),
but only sections that have an online penalty within the computed limit are
considered. In other words, it attempts to give students some level of choice
while still trying to use the computed expectations to divert students from sec-
tions with high expected demand. The columns labeled 5% Limit, 10% Limit, ...
50% Limit allow sections with an online penalty not higher than the computed
value plus the given percentage. The column labeled Limit Zero presents a case
when sections with a negative online penalty are always allowed (they have more
available space than is expected to be used by incoming students). If an online

19

penalty achieved in the first step is positive, sections with a penalty equal to
or below that penalty are allowed. For comparison, a case with all students
sectioned using online sectioning (without any choice) and with all students sec-
tioned only based on their preferences (ignoring any expectations) are included
on Figure 6, columns Online Sectioning and Mid-Day Preference respectively. It
can be seen that there is an increase in unassigned course requests as the range of
acceptable penalty values is increased, indicating increased choice. This increase
in unassigned courses is modest, however, compared with sectioning that does
not consider the expected demand for each section. Satisfaction of student time
preferences, thus degree of choice, also increases as the permitted deviation from
the best online penalties values increases.

Figure 7 represents the average number of student choices per course during
the online student sectioning process. The horizontal axis shows the number of
students that have been sectioned so far. The vertical axis represents the average
number of possible course enrollments (section assignment combinations) for the
following 100 students. Average values from 20 independent runs are presented.

0

2

4

6

8

10

12

14

16

18

20

22

24

26

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
Thousands of students

Online Sectioning

Limit 5%

Limit 10%

Limit 25%

Limit 50%

Limit Zero

Mid-Day Preference

A
ve

ra
g

e
n

u
m

b
er

 o
f

ch
o

ic
es

 p
er

 c
o

u
rs

e

Fig. 7. Online sectioning with student choices: Average number of student choices per
course during sectioning, students are taken in random order.

20

Not surprisingly, the results show that students have the greatest degree of
choice when they are free to choose among all of the available sections. The
ability to choose rapidly decreases, however, as students fill some of the offered
classes. The online sectioning approach that has been proposed, allows for fewer
choices of sections until near the end of the registration process, but the number
of choices remains more consistent, and therefore more equitable, for all students.
Only at the very end, when courses are completely filled, do choices drop off.
What is not shown in this graph is the quality of the available choices. As seen
from the data in Figure 6, the choices available to students using the proposed
online algorithm are better able to fulfill their full set of course requirements.
Another very interesting aspects of these results is the effect of allowing the
system some flexibility to meet student section preferences. When the limit on
the allowable online penalty is raised, the amount of choice also increases as
expected, and is maintained through the whole registration process. These results
indicate that it is possible to provide students with a reasonable degree of choice
and still provide more optimal sectioning solutions with regard to minimizing
the number of unassigned course requests. When viewing these results, it should
be noted that 36.7% of course requests in the data set are for single section
courses and that 59.3% of requests are for courses with four section choices or
less. Several very large courses with sections at many times of the day have
a great effect on available choices. The presented results were computed with
students sectioned in random order, however, similar results were achieved using
other orderings.

7 Conclusions

In this paper a practical, real-word problem of student sectioning has been dis-
cussed. The three solution phases discussed are designed to accommodate most
of the sectioning needs an institution is likely to encounter when automating
course timetabling or assigning students to classes based on a fixed timetable.
These include the ability to create a course timetable minimizing student time
conflicts, to schedule all students to an existing timetable while minimizing con-
flicts, and to schedule students or make changes to their schedules in real time
while anticipating the needs of other students later in the process. The need for
some students to include free time requirements or to choose among available
sections of a course is also addressed. The experiments discussed clearly show
that the proposed approaches are able to improve greatly on an institution’s abil-
ity to meet student course needs, and offer valuable flexibility to accommodate
many student class or time preferences throughout the process.

The student sectioning problem together with the above discussed solution
approach are included in a working course timetabling and student sectioning
application. This application is publicly available under an Open Source license1,
1 Constraint-based solver, including course timetabling and student sectioning exten-

sions is available under GNU Lesser General Public License (LGPL), the complete
timetabling application is available under GNU General Public License (GPL).

21

and can be downloaded from the UniTime web site http://www.unitime.org.
This site also contains information about ongoing research, online documentation
for the described system, and various real-life benchmark data sets for course
timetabling and student sectioning problems including the experiments that are
discussed in this paper.

References

[1] Mahmood Amintoosi and Javad Haddadnia. Feature selection in a fuzzy stu-
dent sectioning algorithm. In Edmund Burke and Michael Trick, editors, Practice
And Theory of Automated Timetabling, Selected Revised Papers, pages 147–160.
Springer-Verlag LNCS 3616, 2005.

[2] Don Banks, Peter van Beek, and Amnon Meisels. A heuristic incremental modeling
approach to course timetabling. In Canadian Conference on AI, pages 16–29, 1998.

[3] Russell Bent and Pascal Van Hentenryck. Online stochastic optimization without
distributions. In ICAPS 2005. Monterey, CA, 2005.

[4] Vincent A. Busam. An algorithm for class scheduling with section preference.
Communications of the ACM, 10(9):567–569, 1967.

[5] Michael W. Carter. A comprehensive course timetabling and student scheduling
system at the University of Waterloo. In Edmund Burke and Wilhelm Erben,
editors, Practice and Theory of Automated Timetabling III, pages 64–82. Springer-
Verlag LNCS 2079, 2001.

[6] Michael W. Carter and Gilbert Laporte. Recent developments in practical course
timetabling. In Edmund Burke and Michael Carter, editors, Practice and Theory
of Automated Timetabling II, pages 3–19. Springer-Verlag LNCS 1408, 1998.

[7] R. Feldman and M. C. Golumbic. Optimization algorithms for student scheduling
via constraint satisfiability. The Computer Journal, 33(4):356–364, 1990.

[8] Alain Hertz and Vincent Robert. Constructing a course schedule by solving a
series of assignment type problems. European Journal of Operational Research,
108(3):585–603, 1998.

[9] Aubin J and J.A. Ferland. A large scale timetabling problem. Computers and
Operations Research, 16(1):67–77, 1989.

[10] Gilbert Laporte and Sylvain Desroches. The problem of assigning students
to courses in a large engineering school. Computers and Operations Research,
13(4):387–394, 1986.

[11] Tomáš Müller. Constraint solver library. GNU Lesser General Public License,
SourceForge.net. Available at http://cpsolver.sf.net.

[12] Tomáš Müller. Constraint-based Timetabling. PhD thesis, Charles University in
Prague, Faculty of Mathematics and Physics, 2005.

[13] Tomáš Müller, Roman Barták, and Hana Rudová. Conflict-based statistics. In
J. Gottlieb, D. Landa Silva, N. Musliu, and E. Soubeiga, editors, EU/ME Work-
shop on Design and Evaluation of Advanced Hybrid Meta-Heuristics. University
of Nottingham, 2004.

[14] Keith Murray, Tomáš Müller, and Hana Rudová. Modeling and solution of a
complex university course timetabling problem. In Edmund Burke and Hana
Rudová, editors, Practice And Theory of Automated Timetabling, Selected Revised
Papers, pages 189–209. Springer-Verlag LNCS 3867, 2007.

[15] G. C. W. Sabin and G. K. Winter. The impact of automated timetabling on
universities-a case study. Journal of the Operational Research Society, 37(7):689–
693, 1986.

22

[16] Scott E. Sampson and Elliott N. Weiss. Increasing service levels in conference and
educational scheduling: A heuristic approach. Management Science, 41(11):1816–
1825, 1995.

[17] Andrea Schaerf. A survey of automated timetabling. Articifial Intelligence Review,
13(2):87–127, 1999.

[18] H. Rudová T. Müller, R. Barták. Minimal perturbation problem in course time-
tabling. In Edmund Burke and Michael Trick, editors, Practice And Theory of
Automated Timetabling, Selected Revised Papers, pages 126–146. Springer-Verlag
LNCS 3616, 2005.

