
ITC 2019: Results Using the UniTime Solver

Tomáš Müller

Purdue University, West Lafayette, Indiana, USA
muller@unitime.org

Abstract. This abstract presents results on using the Uni-Time solver
on the International Timetabling Competition 2019 late data sets. The
results are compared with the best solutions that are published on the
competition website.

Keywords: University course timetabling · ITC 2019 · UniTime

1 Introduction

Building on the success of the earlier timetabling competitions, the International
Timetabling Competition 2019 (http://www.itc2019.org) is aimed to motivate
further research on complex university course timetabling problems coming from
practice. The competition data sets are based on real-world problems that have
been collected using the UniTime application [11]. The individual timetabling
problems are quite large with the largest problem having close to 9,000 classes
and over 38,000 students. The data for the competition have been collected from
10 institutions around the world and there are a lot of differences between them.
For example, some instances have no students (classes are spread in time using
hundreds of non-overlapping constraints), some instances are based on student
pre-registrations (aka post-enrollment course timetabling) and some instances
are based on curricular data. There have been three sets of 10 instances published
during the competition: early, middle and late.

The competition problem combines student sectioning together with stan-
dard time and room assignment of individual course events [8]. Classes are orga-
nized in a course structure defining the valid combinations of classes a student
can take. For example, each student taking a Mathematics course needs to attend
a lecture and a lab that is associated with the lecture. The problem also deals
with travel times between individual rooms, classes that have different lengths
and multiple meetings on a week, classes that are meeting only during certain
weeks, and various additional distribution constraints, such as minimizing gaps
between classes of an instructor or defining how many class hours an instructor
can teach on a day.

UniTime [12] is a comprehensive educational scheduling system that supports
developing course and exam timetables, managing changes to these timetables,
sharing rooms with other events, and scheduling students to individual classes. It
is a distributed system that allows multiple university and departmental sched-
ule managers to coordinate efforts to build and modify a schedule that meets

http://www.itc2019.org


their diverse organizational needs while allowing for minimization of student
course conflicts. The software is distributed free under an open-source license
and the UniTime project is a part of the Apereo Foundation, a non-profit orga-
nization whose mission is to develop and sustain open-source software for higher
education.

As the UniTime course timetabling problem is quite complex, with many ad-
ditional aspects, some simplifications have been made in the competition prob-
lem as well as on the problems collected from UniTime. The aim was to reduce
the modeling complexity without losing any of the hardness (or computational
complexity) of the problems. For example, in UniTime, it is possible for a class
to need two or more rooms, or in certain cases, for multiple classes to share a
room. Also, some distribution constraints have been removed or reformulated
in the competition problem. For example, instead of having a back-to-back con-
straint, the competition problem requires such classes to be placed in the same
room, on the same day, and with limited time between the first and the last
class. This makes for the same outcome when the constraint is satisfied, but the
penalization of a partially violated soft constraint is a bit different. More details
are discussed in [8].

The paper is organized as follows: in the next chapter, the competition solver
is described. There is a short description of the UniTime solver and the code
written to make the solver work on the competition problem. Results are pre-
sented in the following chapter and conclusions are presented at the end of the
paper.

2 The Solver

In this work, the UniTime course timetabling solver is used as it is, even using
the default configuration that ships with the UniTime application. New code
has been only needed to load the competition problem into the UniTime solver
and to save the solution in the competition format. Other than that, some of
the penalizations of violated soft distribution constraints have been changed to
follow the competition problem. The code is open-source (under the Apache
license) and available in GitHub [6].

The UniTime solver is based on an iterative forward search (IFS) algo-
rithm [11]. This algorithm is similar to local search methods; however, in contrast
to classical local search techniques, it operates over feasible, though not necessar-
ily complete, solutions. In these solutions, some classes may be left unassigned.
All hard constraints on assigned classes must be satisfied. Such solutions are eas-
ier to visualize and more meaningful to human users than complete but infeasible
solutions. Because of the iterative character of the algorithm, the solver can also
easily start, stop, or continue from any feasible timetable, either complete or
incomplete.

The algorithm makes use of Conflict-based Statistics (CBS) [9] to prevent
itself from cycling. The IFS algorithm is used until a complete timetable is
found. In the next phase, a local optimum is found using a Hill Climbing (HC)



algorithm. Once a solution can no longer be improved using this method, the
Great Deluge (GD) technique [1] is used. The GD algorithm is altered so that
it allows some oscillations of the bound that is imposed on the overall solution
value [7].

The solver splits the problem into two sub-problems: student sectioning and
class assignment. In the beginning, students are assigned to individual classes fol-
lowing their course demands and course structure. Students with similar courses
are kept together as much as possible, using a simple construction heuristics
while sectioning one course at a time. This allows for the computation of poten-
tial student conflicts between individual classes, that is, the numbers of students
assigned to pairs of classes that are overlapping in time or are one after the other
in rooms that are too far apart. During the solver run, classes are assigned in
times and rooms while the number of student conflicts is minimized, together
with the other penalizations on assigned times, rooms, and violated soft distri-
bution constraints. When the class assignment solver is finished, a local-search
technique is used to move students between alternative classes or to swap two
students between such classes. During the class assignment, student conflicts be-
tween two classes that have some alternatives are weighted less (0.2 of the weight
defined in the problem) than the conflicts between classes with no alternatives
(i.e., conflicts that cannot be removed by re-sectioning).

More details about the UniTime solver, including various improvements that
have been done over the years, are presented in [7].

3 Results

The best and the average penalty from 10 independent runs are presented in
the following table. The results were computed using a 2021 model of MacBook
Pro with an Apple M1 Max processor, 64 GB memory, OS X 12.3 and Java 8.
The solver uses only one CPU core, and the time limit was restricted to two
hours. To make use of multiple processor cores, 8 independent runs were done
in parallel. UniTime solver cpsolver-1.3.189 was used in the experiment. All the
runs were done with the same parameters (using the UniTime’s default solver
configuration), without any parameter tuning or consideration of a particular
instance. The results are compared with the best solutions available at the time
of the experiment.

Table 1 shows the results from the experiment compared with the best so-
lutions uploaded at the competition website as of June 27, 2022. The first two
columns (named UniTime) show the results of this experiment. For each of the
late instances, the penalty from the best solution of the 10 independent runs and
the average penalty from all the 10 runs is listed respectively. These results are
compared with the best solutions from the five competition finalists (columns
Holm [4], Rappos [10], Gashi [3], Er-rhaimini [2], and Lemos [5]), which together
with the solver of the author of this paper (column Müller) are the six best
solvers available at the time of the writing.



Table 1. UniTime solver results compared with the best results on the late instances.

Late UniTime Best Result at ITC2019.org

Instance 2h Best Average Holm Rappos Gashi Er-rhaimini Lemos Müller

agh-fal17 130 635 133 754.9 140 194 184 030 153 236 142 687 117627

bet-spr18 352 249 353 373.5 348524 360 057 360 437 373 039 353 920 348 536

iku-spr18 40 765 43 082.0 25863 36 711 85 969 70 932 45 537 35 783

lums-fal17 398 411.1 349 386 486 558 813 368

mary-fal18 4 924 5 101.4 4331 5 637 7 199 6 944 44 097 4 805

muni-fi-fal17 3 506 3 789.5 2837 3 794 4 712 4 820 4 161 3 180

muni-fspsx-fal17 12 455 15 639.9 12 390 33 001 41 933 104 625 101 317 10058

muni-pdfx-fal17 117 382 125 200.6 82258 151 464 159 203 191 887 151 461 97 449

pu-d9-fal19 46 067 47 441.5 39081 134 009 82 757 70 450 47 543 44 603

tg-spr18 16 140 20 418.2 12704 12 856 15 992 19 738 31 900 14 548

The best know solution of each instance is marked in bold. Solutions of the
finalists that were improved after the competition has ended are underlined.
This means that in these cases a better solution was uploaded on the ITC 2019
website after the competition.

Within the short period of time, the solver was consistently able to produce
a solution that is better than the second best solver from the finalists in seven
cases. This is indicated by the table colors. The second best results from the
five finalists is indicated by blue color. All UniTime results from this experiment
that are better than this result are marked with violet color. The remaining three
instances (iku-spr18, lums-fal17, and tg-spr18) are the only three late instances
that do not have any students.

Better results can be achieved with longer run times and some parameter
tuning, which has only been done to some extent. These include some additional
improvements, e.g., allowing students to be re-sectioned continuously during the
search or removing some of the complexity of the solver (that is not needed for
the competition). The best results achieved are listed in the last column (named
Müller). With these changes, the UniTime solver has produced the best know
solution for two late instances (agh-fal17 and muni-fspsx-fal17), and it was able
to produce second best results for all but one instance (tg-spr18).

4 Conclusion

The presented solver did not compete in the competition as the author of this
abstract is the technical lead and principal developer of the UniTime system
and a co-organizer of the competition. Nonetheless, the presented results can
provide a good reference of how the UniTime solver would do on the competition
problems.

While the UniTime system benefits of almost two decades of research and
development, it is good to see that the competitors are able to produce results



that are in par or better than what UniTime would produce out of the box using
a reasonable runtime.

References

1. Dueck, G.: New optimization heuristics: The great deluge algorithm and the record-
to record travel. Journal of Computational Physics 104, 86–92 (1993)

2. Er-rhaimini, K.: Forest growth optimization for solving timetabling problems. In:
ITC 2019: International Timetabling Competition (2020)

3. Gashi, E., Sylejmani, K., Ymeri, A.: Simulated annealing with penalization for
university course timetabling. In: Proceedings of the 13th International Conference
on the Practice and Theory of Automated Timetabling - PATAT 2021. vol. 2, pp.
361–366 (2021)

4. Holm, D.S., Mikkelsen, R.Ø., Sørensen, M., Stidsen, T.J.R.: A graph-based MIP
formulation of the international timetabling competition 2019. Journal of Schedul-
ing (2022), published: 11 March 2022

5. Lemos, A., Monteiro, P.T., Lynce, I.: ITC 2019: University course timetabling with
MaxSAT. In: Proceedings of the 13th International Conference on the Practice and
Theory of Automated Timetabling - PATAT 2021. vol. 1, pp. 105–128 (2020)

6. Müller, T.: UniTime ITC 2019 solver source codes, https://github.com/tomas-
muller/cpsolver-itc2019

7. Müller, T.: University course timetabling: Solver evolution. In: Practice and Theory
of Automated Timetabling 2016 Proceedings. pp. 263—-282 (2016)

8. Müller, T., Rudová, H., Müllerová, Z.: University course timetabling and inter-
national timetabling competition 2019. In: Practice and Theory of Automated
Timetabling 2018 Proceedings. pp. 5–31 (2018)

9. Müller, T., Barták, R., Rudová, H.: Conflict-based statistics. In: EU/MEWorkshop
on Design and Evaluation of Advanced Hybrid Meta-Heuristics (2004)

10. Rappos, E., Thiémard, E., Robert, S., Hêche, J.F.: A mixed-integer programming
approach for solving university course timetabling problems. Journal of Scheduling
(2022), published: 15 February 2022

11. Rudová, H., Müller, T., Murray, K.: Complex university course timetabling. Jour-
nal of Scheduling 14(2), 187–207 (2011)

12. UniTime: University timetabling – Comprehensive academic scheduling solutions,
https://www.unitime.org

https://github.com/tomas-muller/cpsolver-itc2019
https://github.com/tomas-muller/cpsolver-itc2019
https://www.unitime.org

	ITC 2019: Results Using the UniTime Solver

