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1. Introduction 
Constraint programming is a natural tool for describing as well as solving a lot 

of problems from various areas. Its major advantage is its capability of precise 
declarative description of a problem using relations between variables. It is based on a 
strong theoretical basis and it has wide practical applications in areas of evaluation, 
modelling, and optimisation. 

Timetabling is one of the typical examples of constraint programming 
application. The task is to allocate activities in time and space respecting various 
constraints and to satisfy as nearly as possible a set of desirable objectives. A typical 
constraint is the request that activities which are using the same resource (e.g., a room, a 
machine, an operator, …) can not overlap in time or that a resource is of a certain 
capacity, restricting e.g. how many activities can use it at the same time. In addition, 
there are usually relations between activities and constraints restricting what resources 
an activity should or can use. 

There are a lot of timetabling problems from various areas, for example, there is 
course, examination, transport, workforce, sport timetabling etc. In this thesis we will 
concentrate on course timetabling. 

 
There are two major objectives of this Ph.D. thesis: We would like to find, 

describe and experimentally verify a constraint-based algorithm which is applicable to 
course timetabling problems as well as to other constraint satisfaction and optimisation 
problems. Moreover, with such an algorithm, we would like to tackle a real-life large 
scale timetabling problem. The whole Ph.D. work was motivated by this possibility to 
create an algorithm which is able to solve a given real-life problem and which can 
produce a solution fully acceptable by the users. 

2. Overview 
Many real-life industrial and engineering problems can be modelled as finite 

constraint satisfaction problems (CSP) [Tsa93]. A CSP consists of a set of variables 
associated with finite domains and a set of constraints restricting the values that the 
variables can simultaneously take. In a complete solution of a CSP, a value is assigned 
to every variable from the variable’s domain, in such a way that every constraint is 
satisfied. 

Most algorithms for solving CSPs search systematically through the possible 
assignments of values to variables. Such algorithms are guaranteed to find a solution, if 
one exists, or to prove that the problem has no solution. They start from an empty 
solution (no variable is assigned) that is extended towards a complete solution satisfying 
all the constraints in the problem. Backtracking occurs when a dead-end is reached. The 
biggest problem of such backtrack-based algorithms is that they typically make early 
mistakes in the search, i.e., a wrong early assignment can cause a whole subtree to be 
explored with no success. There are several ways of improving standard chronological 
backtracking. Look-back enhancements exploit information about the search which has 
already been performed, e.g., backmarking or backjumping [DF02]. Look-ahead 
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enhancements exploit information about the remaining search space via filtering 
techniques (e.g., via maintaining arc consistency described in [BR97, BR01]) or 
variable and value ordering heuristics [MF00]. The last group of enhancements is trying 
to refine the search tree during the search process, e.g., dynamic backtracking [Gin93]. 

Local search algorithms [MF00] (e.g., min-conflict [MJP92] or tabu search 
[GH97]) perform an incomplete exploration of the search space by repairing an 
infeasible complete assignment. Unlike systematic search algorithms, local search 
algorithms move from one complete (but infeasible) assignment to another, typically in 
a non-deterministic manner, guided by heuristics. In general, local search algorithms are 
incomplete, they do not guarantee finding a complete solution satisfying all the 
constraints. However, these algorithms may be far more efficient (wrt. response time) 
than systematic ones in finding a solution. For optimisation problems, they can reach a 
far better quality in a given time frame. 

There are several other approaches which try to combine local search methods 
together with backtracking based algorithms. For example, the decision repair algorithm 
presented in [JL02] repeatedly extends a set of assignments (called decisions) satisfying 
all the constraints, like in backtrack-based algorithms. It performs a local search to 
repair these assignments when a dead-end is reached (i.e., these decisions become 
inconsistent). After these decisions are repaired, the construction of the solution 
continues to the next dead-end. A similar approach is used in the algorithm presented in 
[Sch97] as well. 

2.1. Constraint Satisfaction Problem 
A constraint satisfaction problem (CSP) is a triple Θ = (V,D,C), where  

• V = {v 1,v2,…,vn} is a finite set of variables,  
• D ={D1,D2,…,Dn} is a set of domains (i.e., Di is a set of possible values for 

the variable vi), 
• C = {c1,c2,…,cm} is a finite set of constraints restricting the values that the 

variables can simultaneously take. 
• A solution to the constraint satisfaction problem Θ is a complete assignment 

of the variables from V that satisfies all the constraints. 

For many constraint satisfaction problems it is hard or even impossible to find a 
solution in the above sense. For example, for over-constrained problems [FW92], there 
does not exist any complete assignment satisfying all the constraints. Therefore other 
definitions of problem solution like Partial Constraint Satisfaction were introduced 
[FW92]. In paper [BMR04], we proposed a new view of the problem solution based on 
a new notion of maximal consistent assignment. This approach is strongly motivated by 
the university timetabling problem but we believe that it is generally applicable. The 
basic idea behind is to assign as many variables as possible while still keeping the rest 
of the problem “consistent”. It means that the user may later relax some constraints in 
the problem (typically some of the constraints among the non-assigned variables that 
cause conflicts) so that after this change the assignment can be extended to other 
variables. 

Formally, let Θ be a CSP and ζ be a consistency technique (for example arc 
consistency). We say that the constraint satisfaction problem is consistent if the 
consistency technique deduces no conflict (e.g., for arc consistency, the conflict is 
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indicated by emptying some domain). We denote ζ(Θ) the result of the consistency test 
which could be either true, if the problem Θ is ζ consistent, or false otherwise. Let Θ be 
a CSP and σ be a (partial) assignment of variables, then we denote Θσ application of 
the assignment σ to the problem Θ, i.e., the domains of the variables in σ are reduced to 
a singleton value defined by the assignment. Finally, we say that a partial assignment σ 
is consistent with respect to some consistency technique ζ iff ζ(Θσ). Note that a 
complete consistent assignment is a solution of the problem. Note also that 
backtracking-based solving techniques typically extend a partial consistent assignment 
towards a complete (consistent) assignment. 

As we already mentioned, for some problems there does not exist any complete 
consistent assignment; these problems are called over-constrained. In such a case, we 
propose to look for the maximal consistent assignment. We say that the consistent 
assignment is maximal for a given CSP if there is no consistent assignment with a larger 
number of assigned variables. We can also define a weaker version, so called locally 
maximal consistent assignment. Locally maximal consistent assignment is a consistent 
assignment that cannot be extended to another variable(s). Notice the difference 
between the above two notions. The maximal consistent assignment is defined using the 
cardinality of the assignment (the number of assigned variables) so it has a global 
meaning while the locally maximal consistent assignment is defined using a subset 
relation, i.e., it is not possible to assign an additional variable without getting 
inconsistency. It is pretty easy (fast) to extend any consistent assignment to a locally 
maximal consistent assignment. In fact, every branch of the search tree defines such a 
locally maximal consistent assignment. Visibly, the maximal consistent assignment is 
the largest (using cardinality) locally maximal consistent assignment. 

2.2. Minimal Perturbation Problem 
Most existing solvers are designed for static problems. These problems can be 

expressed, solved by appropriate means, and the solution applied without any change to 
the problem statement.  Many real-life problems [Koc02, VJ03, SW00, Ian04], 
however, are subject to change. Additional input requirements produce a new problem 
derived from the original problem. The dynamics of such a problem may require 
changes during the solution process, or even after a solution is generated. In many real 
situations, it is necessary to alter the solution process so that the dynamic aspects of the 
problem definition are taken into account. 

Problem changes may result from changes to environmental variables, such as 
broken machines, delayed flights, or other unexpected events. Users may also specify 
new properties based on the solution found so far. The goal is to find an improved 
solution for the user.  Naturally, the problem solving process should continue as 
smoothly as possible after any change in the problem formulation. In particular, the 
solution of the altered problem should not differ significantly from the solution found 
for the original problem. 

There are several reasons to keep a new solution as close as possible to the 
existing solution. If the solution has already been published, such as the assignment of 
gates to flights, frequent changes would confuse passengers. Moreover, changes to a 
published solution may necessitate other changes if initially satisfied wishes of users are 
violated.  This may create an avalanche reaction. 

Dynamic problems appear frequently in real-life planning and scheduling 
applications where the task is to “minimally reconfigure schedules in response to a 
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changing environment” [SW00]. Dynamic changes in the context of timetabling 
problems have started to be studied at [EGJ03]. Issues of interactive timetabling which 
needs to handle dynamic aspects of the problem were discussed in [CDJD04, PMM04, 
MB02]. A survey of existing approaches to dynamic scheduling can be found in 
[Koc02]. In an annotated bibliography on dynamic constraint solving [VJ03], it is 
notable that only four papers were devoted to the problem of minimal changes.  

 
In paper [BMR04], we presented a new formal model of the minimal 

perturbation problem that is applicable to over-constrained problems as well as to 
problems where finding a complete solution is hard. Recall that the idea of MPP is to 
define a solution of the altered problem in such a way that this solution is as close as 
possible to the (partial) solution of the original problem.  

We define a minimal perturbation problem (MPP) as a quadruple 
Π = (Θ, Θ’, F, α), where: 

• Θ, Θ’ are two CSPs called an initial problem and a changed problem, 
• F is a mapping of the variables from Θ to Θ’ (see below for details), and 
• α is a (locally) maximal consistent assignment for Θ called initial 

assignment. 

The function F defines how the problem Θ is changed in terms of variables. It is 
(almost) one-to-one mapping of the variables from Θ to the variables from Θ’. For some 
variables v from Θ, the function F might not be defined which means that the variable v 
is removed from the problem. However, if the function F is defined1 then it is unique (it 
is a one-to-one mapping), i.e., ( v≠u & !F(v) & !F(u) ) ⇒ F(v)≠F(u). Also, for some 
variables v’ from Θ’, the origin might not be defined (i.e., there is no variable v such 
that F(v) = v’), which means that the variable v’ is added to the problem. Notice also 
that the constraints and domains can be changed arbitrarily when going from Θ to Θ’. 
We do not need to capture such changes using the mapping functions like F because we 
are concerned primarily about the variable assignments. 

Let σ be a (partial) assignment for Θ and γ be a (partial) assignment for Θ’. Then 
we define WΠ(σ,γ) as a set of variables v from Θ such that the assignment of v in σ is 
different from F(v) in γ, i.e., WΠ(σ,γ) = {v∈Θ | v/h∈σ & F(v)/h’∈γ & h≠h’} 2. We call 
WΠ(σ,γ) a distance set for σ and γ in Π and the elements of the set are called 
perturbations. 

A solution to the minimal perturbation problem Π = (Θ, Θ’, F, α) is a (locally) 
maximal consistent assignment β for Θ’ such that the size of the distance set WΠ(α,β) is 
minimal. The idea behind the solution of MPP is apparent – the task is to find the best 
possible assignment of the variables for the new problem in such a way that it differs 
minimally from the existing variable assignment of the initial problem. 

Let us summarize now the two criteria used when solving MPP: the first 
criterion is maximizing the number of assigned variables, the second criterion is 
minimizing the number of perturbations between the resultant solution and the previous 
(initial) solution. These criteria are combined lexicographically to get an objective 
function. 

                                                
1 Denoted !F(v), meaning F is defined for variable v 
2 For simplicity reasons we write v∈Θ which actually means v∈V, where Θ = (V,D,C). 
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3. Timetabling 
A timetable shows when particular events are to take place. It does not 

necessarily imply an allocation of resources. Thus a published bus or train timetable 
shows when journeys are to be made on a particular route or routes. It does not tell us 
which vehicles or drivers are to be assigned to particular journeys. The allocation of 
vehicles and drivers is part of the scheduling process. Although timetabling is strictly 
the design of the pattern of journeys, this pattern may be devised as part of a process 
which bears in mind whether it is likely that an efficient schedule may be fitted to the 
resulting journey pattern. 

A.Wren defines timetabling [Wren96] as follows: 

Timetabling is the allocation, subject to constraints, of given resources to 
objects being placed in space-time, in such a way as to satisfy as nearly as possible a 
set of desirable objectives. 

Timetabling has long been known to belong to the class of problems called NP-
complete [CK96], i.e., no method of solving it in a reasonable (polynomial) amount of 
time is known. 

3.1. Purdue Timetabling Problem 
Our work is motivated by the class timetabling problem at Purdue University 

[RM03, MR04]. Here a timetable for large lecture classes is constructed by a central 
scheduling office in order to balance the requirements of many departments offering 
large classes that serve students from across the university.  Smaller classes, usually 
focused on students in a single discipline, are timetabled by “schedule deputies” in the 
individual departments. Such a complex timetabling process, including subsequent 
student registration, takes a rather long time.  Initial timetables are generated about half 
a year before the semester starts. The importance of creating a solver for a dynamic 
problem increases with the length of this time period and the need to incorporate 
various changes that arise. 

As for Fall 2004 semester, this problem consists of about 830 classes (forming 
almost 1800 meetings) having a high density of interaction that must fit within 50 
lecture rooms with capacities up to 474 students. Room availability is a major constraint 
for Purdue. Overall utilization of the time available in rooms exceeds 78%; moreover, it 
is around 94% for the four largest rooms. About 90,000 course requests by almost 
30,000 students must also be considered. 8.4% of class pairs have at least one student 
enrolment in common. 

The timetable maps classes (students, instructors) to meeting locations and 
times.  A major objective in developing an automated system is to minimize the number 
of potential student course conflicts which occur during this process. This requirement 
substantially influences the automated timetable generation process since there are 
many specific course requirements in most programs of study offered by the University.  

To minimize potential time conflicts, Purdue has historically subscribed to a set 
of standard meeting patterns.  With few exceptions, 1 hour × 3 day per week classes 
meet on Monday, Wednesday, and Friday at the half hour (7:30, 8:30, 9:30, ...). 1.5 hour 
× 2 day per week classes meet on Tuesday and Thursday during set time blocks.  2 or 3 
hours × 1day per week classes must also fit within specific blocks, etc. Generally, all 
meetings of a class should be taught in the same location. Such meeting patterns are of 
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interest to the problem solution as they allow easier changes between classes having the 
same or similar meeting patterns. 

Another aspect of the timetabling problem that must be considered is the need to 
perform student sectioning. Most of the classes in the large lecture problem (about 75%) 
correspond to single-section courses. Here we have exact information about all students 
who wish to attend a specific class. The remaining courses are divided into multiple 
sections. In this case, it is necessary to divide the students enrolled in each course into 
sections that will constitute the classes.   

Currently, the timetable for Purdue University is constructed manually. We have 
proposed an automated timetabling system to solve the initial as well as the minimal 
perturbation problem in [MR04, MRB05]. This solution is based on the iterative 
forward search algorithm described in the following chapters. 

Problem Representation 
Due to the set of standardized time patterns and administrative rules enforced at 

the university, it is generally possible to represent all meetings of a class by a single 
variable. This tying together of meetings considerably simplifies the problem 
constraints. Most classes have all meetings taught in the same room, by the same 
instructor, at the same time of day. Only the day of week differs.  Moreover, these days 
and times are mapped together with the help of meeting patterns, e.g., a 2 hours × 3 day 
per week class can be taught only on Monday, Wednesday, Friday, beginning at 5 
possible times. 

In addition, all valid placements of a course in the timetable have a one-to-one 
mapping with values in the variable's domain. This domain can be seen as a subset of 
the Cartesian product of the possible starting times, rooms, etc. for a class represented 
by these values. Therefore, each value encodes the selected time pattern (some 
alternatives may occur, e.g., 1.5 hour × 2 day per week may be an alternative to 1 hour 
× 3 day per week), selected days (e.g., a two meeting course can be taught in 
Monday+Wednesday, Tuesday+Thursday, Wednesday+Friday), and possible starting 
times. A value also encodes the instructor and selected meeting room. Each such 
placement also encodes its preferences (soft constraints), combined from the preference 
for time, room, building and the room's available equipment.  Only placements with 
valid times and rooms are present in a class's domain. For example, when a computer 
(classroom equipment) is required, only placements in a room containing a computer 
are present. Also, only rooms large enough to accommodate all the enrolled students 
can be present in valid class placements. Similarly, if a time slice is prohibited, no 
placement containing this time slice is in the class's domain. 

The variable and value encodings described above leave us with only two types 
of hard constraints to be implemented: resource constraints (expressing that only one 
course can be taught by an instructor or in a particular room at the same time), and 
group constraints (expressing relations between several classes, e.g., that two sections of 
the same lecture can not be taught at the same time, or that some classes have to be 
taught one immediately after another). 

There are three types of soft constraints in this problem. First, there are soft 
requirements on possible times, buildings, rooms, and classroom equipment (e.g., a 
computer or a projector). These preferences are expressed as integers: 
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• -2 … strongly preferred 
• -1 … preferred 
•  0 … neutral (no preference) 
•  1 … discouraged 
•  2 … strongly discouraged 

As mentioned above, each value, besides encoding a class's placement (time, 
room, instructor), also contains information about the preference for the given time and 
room. Room preference is a combination of preferences on the choice of building, room, 
and classroom equipment. The second group of soft constraints is formed by student 
requirements. Each student can enrol in several classes, so the aim is to minimize the 
total number of student conflicts among these classes. Such conflicts occur if the 
student cannot attend two classes to which he or she has enrolled because these classes 
have overlapping times. Finally, there are some group constraints (additional relations 
between two or more classes). These may either be hard (required or prohibited), or soft 
(preferred), similar to the time and room preferences (from -2 to 2). 

4. Iterative Forward Search Algorithm 
The iterative forward search (IFS) algorithm that we propose here is based on 

ideas of local search methods [MF00]. However, in contrast to classical local search 
techniques, it operates over feasible, though not necessarily complete solutions. In such 
a solution, some variables can be left unassigned. Still all hard constraints on assigned 
variables must be satisfied. Similarly to backtracking based algorithms, this means that 
there are no violations of hard constraints. 

Working with feasible incomplete assignments has several advantages compared 
to the complete infeasible assignments that usually occur in local search techniques. For 
example, when the solver is not able to find a solution (i.e., a complete feasible 
assignment), a largest feasible partial assignment (using cardinality) can be returned. 
Especially in interactive timetabling applications, such assignments are much easier to 
visualize, even during the search, since no hard constraints are violated. For instance, 
two lectures never use a single resource (e.g., a classroom) at the same time. Moreover, 
because of the iterative character of the search, the algorithm can easily start, stop, or 
continue from any feasible assignment, either complete or incomplete. 

 
Iterative forward search works in iterations (see Figure 4.1. for algorithm). 

During each step, a variable A is initially selected. Typically an unassigned variable is 
chosen like in backtracking-based search. An assigned variable may be selected when 
all variables are assigned but the solution found so far is not good enough (for example, 
when there are still many violations of soft constraints). Once a variable A is selected, a 
value a from its domain DA is chosen for assignment. Even if the best value is selected 
(whatever “best” means), its assignment to the selected variable may cause some hard 
conflicts with already assigned variables. Such conflicting assignments are removed 
from the solution and become unassigned. Finally, the selected value is assigned to the 
selected variable. 

The algorithm attempts to move from one (partial) feasible solution σ to another 
via repetitive assignment of a selected value a to a selected variable A. During this 
search, the feasibility of all hard constraints in each iteration step is enforced by 
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unassigning the conflicting assignments η (computed by function conflicts). The search 
is terminated when the requested solution is found or when there is a timeout expressed, 
for example, as a maximal number of iterations or available time being reached. The 
best solution found is then returned. 

procedure ifs(V,D,C,α) // an initial assignment α is the parameter 

   σ = α;           // current assignment 
   β = α;           // best assignmen  
   while canContinue(σ) do           // CSP problem Φ=(V,D,C) is  
      A = selectVariable(σ);         // a global parameter 
      a = selectValue(σ, A);         // for all used functions 
      η = conflicts(σ, A, a); //conflicting assignments 
      σ = (σ - η) ∪ {A/a};    //next assignment 
      if better(σ, β) then β = σ; 
   end while 
   return β; 
end procedure 

Fig. 4.1. The iterative forward search algorithm 

The above algorithm schema is parameterized by several functions, namely 

• the termination condition (function canContinue), 
• the solution comparator (function better), 
• the variable selection (function selectVariable) and 
• the value selection (function selectValue). 

4.1.1. Termination Condition 
The termination condition determines when the algorithm should finish. For 

example, the solver should terminate when the maximal number of iterations or some 
other given timeout value is reached. Moreover, it can stop the search process when the 
current assignment is good enough, e.g., all variables are assigned and/or some other 
solution parameters are in the required ranges. For example, the solver can stop when all 
variables are assigned and less than 10% of the soft constraints are violated. 
Termination of the process by the user can also be a part of the termination condition. 

4.1.2. Solution Comparator 
The solution comparator compares two assignments: the current assignment and 

the best assignment found. This comparison can be based on several criteria. For 
example, it can lexicographically order assignments according to the number of 
unassigned variables (a smaller number is better) and the number of violated soft 
constraints. 

4.1.3. Variable Selection 
As mentioned above, the presented algorithm requires a function that selects a 

variable to be (re)assigned during the current iteration step. This function is equivalent 
to a variable selection criterion in constraint programming. There are several guidelines 
for selecting a variable [Dech03]. In local search, the variable participating in the largest 
number of violations is usually selected first. In backtracking-based algorithms, the 
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first-fail principle is often used, i.e., a variable whose instantiation is most complicated 
is selected first. This could be the variable involved in the largest set of constraints or 
the variable with the smallest domain, etc. 

We can split the variable selection criterion into two cases. If some variables 
remain unassigned, the “worst” variable among them is selected, i.e., first-fail principle 
is applied. This may be, for example, the variable with the smallest domain or with the 
highest number of hard and/or soft constraints. 

The second case occurs when all variables are assigned. Because the algorithm 
does not need to stop when a complete feasible assignment is found, the variable 
selection criterion for such case has to be considered as well. Here all variables are 
assigned but the assignment is not good enough, e.g., in the sense of violated soft 
constraints. We choose a variable whose change of a value can introduce the best 
improvement of the assignment. It may, for example, be a variable whose value violates 
the highest number of soft constraints. 

It is possible for the assignment to become incomplete again after such 
an iteration because a value which is not consistent with all hard constraints can be 
selected in the value selection criterion. This can be also taken into account in the 
variable selection heuristics. 

4.1.4. Value Selection 
After a variable is selected, we need to find a value to be assigned to the 

variable. This problem is usually called “value selection” in constraint programming 
[Dech03]. Typically, the most useful advice is to select the best-fit value. So, we are 
looking for a value which is the most preferred for the variable and which causes the 
least trouble as well. This means that we need to find a value with the minimal potential 
for future conflicts with other variables. For example, a value which violates the 
smallest number of soft constraints can be selected among those with the smallest 
number of hard conflicts. 

To avoid cycling, it is possible to randomize the value selection procedure. For 
example, it is possible to select the N best values for the variable and choose one of 
them randomly. Or, it is possible to select a set of values so that the heuristic evaluation 
for the worst value in this group is maximally p percent higher than the heuristic 
evaluation of the best value (where smaller value means better evaluation). Again, the 
value is selected randomly from this group. This second rule inhibits randomness if 
there is a single very good value. 

4.2. IFS for Minimal Perturbation Problem 
Let us first describe the meaning of perturbation in our approach. The changed 

problem differs from the initial problem by input perturbations. An input perturbation 
means that a variable must have different values in the initial and changed problem 
because of some input changes (e.g., a course must be scheduled at a different time in 
the changed problem). 

The solution to the minimal perturbation problem (MPP) [SW00, BMR03, 
BMR04] can be evaluated by the number of additional perturbations. They are given by 
subtraction of the final number of perturbations and the number of input perturbations. 
An alternative approach is to consider variables in the initial and in the new problem 
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which were assigned differently [RRH02, BMR03, BMR04]. As before, we need to 
minimize the number of such differently assigned variables. 

Despite the local search nature of the algorithm, there are some adjustments 
needed to be able to effectively solve the MPP. The purpose of these adjustments is to 
minimize the number of additional perturbations. The easiest way to do this is to adopt 
variable and value selection heuristics which prefer the previous assignments (but not 
all the time, to avoid cycling). 

For example, value selection heuristics can be adopted to select the initial value 
(if it exists) randomly with a probability P (it can be rather high, e.g., between 50-90%). 
If the initial value is not selected, the original value selection can be executed. Also, if 
there is the initial value in the set of best-fit values (e.g., among values with the minimal 
number of hard and soft conflicts), the initial value can be preferred as well. Otherwise, 
a value can be selected randomly from the constructed set of best-fit values. A 
disadvantage of such selection is that the probability P has to be selected carefully: if it 
is too small, the search can easily move away and the number of additional 
perturbations will grow during the search. If it is too high, the search will stick too 
much with the initial solution and, if there is no solution with a small amount of 
additional perturbations it will be hard to find a feasible solution. 

Another approach is to limit the number of additional perturbations during the 
search. Furthermore, like in branch and bound, such a limit can be decreased when a 
feasible solution with the given number of perturbations is found. For example, if the 
number of additional perturbations is equal to or greater than the limit, the initial value 
has to be selected. Otherwise, if the number of additional perturbations is below the 
limit, the original value selection strategy is followed.  The number of additional 
perturbations can also include variables that are not assigned yet whose initial values 
cause a hard conflict with the current assignments. 

The above approaches can also be combined together, which can help to divide 
their influence during the search.  

Variable selection heuristics can also be adopted to find a solution with a small 
number of perturbations. For example, when all variables are assigned, a variable that 
has an initial value but such value is not assigned to it should be selected, e.g., randomly 
among all variables that have not the initial value assigned, and that participate in the 
highest number of violated soft constraints. 

4.3. Conflict-based Statistics 
Value ordering heuristics play an important role in solving various problems. 

They allow choosing suitable values for particular variables to compute a complete 
and/or optimal solution. Problem-specific heuristics are usually applied because 
problem-independent heuristics are computationally expensive. Here we propose an 
efficient problem-independent approach to value selection whose aim is to recognize 
good and poor values. 

Methods similar to conflict-based statistics (CBS) were successfully applied in 
earlier works [DF02, JL02]. In the weighting-conflict heuristics presented in [JL02], a 
weight is associated with each decision (assignment of a value to a variable). It 
characterizes the number of times that the decision has appeared in any conflict. It also 
takes the arity of a conflict into account. Each time a conflict is found, the weight of its 
decision constraints (i.e., assignments which are in the conflict) is increased by 1/r 
where r is the arity of the conflicting constraint. These weights are used for selections of 
decisions which are negated when a dead-end is reached. 
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In our approach, the conflict-based statistics works as an advice in the value 
selection criterion. It helps to avoid repetitive, unsuitable assignments of the same value 
to a variable. In particular, conflicts caused by this assignment in the past are 
memorized. In contrast to the weighting-conflict heuristics proposed in [JL02], conflict 
assignments are memorized together with the assignment which caused them. Also, we 
propose our statistics to be unlimited, to prevent short-term as well as long-term cycles. 

 
The main idea behind conflict-based statistics is to memorize conflicts and 

discourage their future repetition. For instance, when a value is assigned to a variable, 
conflicts with some other assigned variables may occur. This means that there are one 
or more constraints which prohibit the applied assignment together with the existing 
assignments. A counter, tracking how many times such an event occurred in the past, is 
stored in memory. If a variable is selected for an assignment (or reassignment) again, 
the stored information about repetition of past conflicts is taken into account.   

Conflict-based statistics is a data structure that memorizes hard conflicts which 
have occurred during the search together with their frequency and assignments which 
caused them. More precisely, it is an array  

CBS[Va = va → ¬ Vb = vb] = cab. 

It means that the assignment Va = va caused cab times a hard conflict with the 
assignment Vb=vb in the past. Note that it does not imply that these assignments Va = va 
and Vb = vb cannot be used together in case of non-binary constraints. The proposed 
conflict-based statistics does not actually work with any constraints. It only memorizes 
the conflict assignments together with the assignment which caused them. This helps us 
capture similar cases as well, e.g., when the applied assignment violates a constraint 
different from the past ones, but some of the created conflicts are the same. It also 
reduces the total space allocated by the statistics. 

The conflict-based statistics can be implemented as a hash table. Such structure 
is empty in the beginning. During computation, the structure contains only non-zero 
counters. A counter is maintained for a tuple [A = a → ¬ B = b] in case that the value a 
was selected for the variable A and this assignment A = a caused a conflict with an 
existing assignment B = b. An example of this structure 

A = a    →    3 × ¬ B = b,   4 × ¬ B = c,   2 × ¬ C = a,   120 × ¬ D = a 

expresses that variable B conflicts three times with its assignment b and four times with 
its assignment c, variable C conflicts two times with its assignment a and D conflicts 
120 times with its assignment a, all because of later selections of value a for variable A. 
This structure can be used in the value selection heuristics to evaluate conflicts with the 
assigned variables. For example, if there is a variable A selected and its value a is in 
conflict with an assignment B = b, we know that a similar problem has already occurred 
3 times in the past, and the conflict A = a can be weighted with the number 3. 

The conflict-based statistics is being used in the value selection criterion. A 
trivial min-conflict value selection criterion selects a value with the minimal number of 
conflicts with the existing assignments. This heuristics can be easily adapted to a 
weighted min-conflict criterion. Here the value with the smallest sum of the number of 
conflicts multiplied by their frequencies is selected. Stated in another way, the weighted 
min-conflict approach helps to select a certain value that might cause more conflicts 
than another value. The point is that these conflicts are not so frequent, and therefore 
they have a lower weighted sum. Our hope is that it can considerably help the search to 
get out of a local minimum. 
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4.4. Summary 
In this section, we have presented the iterative forward search algorithm which is 

a mixture of systematic search and the local search approach. In the following section, 
we will discuss some of its extensions and later on we will present some computational 
results of this algorithm used on a CSP problem as well as on the large lecture 
timetabling problem on Purdue University. 

The very first version of this algorithm was presented in [MB01] and in the 
diploma thesis [Mul01] as an ad-hoc solution for the iterative lecture timetabling 
problem. Its application on lecture timetabling problem on Mathematics and Physics 
Faculty of Charles University was presented in [MB02]. The applicability of this 
algorithm on the n-queens problem was presented in [Mul02]. 

The iterative forward search algorithm in the form as it is presented in this 
chapter for solving of a general CSP with various extensions (conflict-based heuristics, 
maintenance of arc consistency, its extension towards dynamic backtracking) was 
presented in [MBR04]. Its application to the minimal perturbation problem of Purdue 
University timetabling was presented in [MR04, MRB05]. Also, we used this algorithm 
in comparison with a branch&bound algorithm designed for solving MPP problem in 
[BMR04] where it was better than the proposed branch&bound algorithm. 

5. Experimental Results 
The iterative forward search has been implemented in Java. It contains a general 

implementation of the iterative search algorithm. The general solver operates over 
abstract variables and values with a selection of available extensions, basic general 
heuristics, solution comparators, and termination functions. It may be customized to fit 
a particular problem (e.g., as it has been extended for Purdue University timetabling) by 
implementing variable and value definitions, adding hard and soft constraints, and 
extending the parametric functions of the algorithm. 

 
In this chapter, we present capabilities of iterative forward search on the real-life 

course timetabling problem of Purdue University (see chapter 3.1 for the description of 
the problem). Results from solving both initial as well as minimal perturbation problems 
are presented. 

The following experiments were performed on the complete Fall 2004 data set, 
including 830 classes to be placed in 50 classrooms. The classes included represent 
89,677 course requirements for 29,808 students. We have achieved similar results with 
Fall 2001, Spring 2005 and Fall 2005 data sets as well, even though they are quite 
different in the number of requirements (Fall 2004 is the most constrained one out of 
these four data sets). 

Besides the discussed IFS solver, the timetabling application for Purdue 
University also contains a web-based graphical user interface (written using Java Server 
Pages) which allows management of several versions of the data sets (input 
requirements, solutions, changes, etc.), browsing the resultant solutions (see Figure 5.1), 
and tracking and managing changes between them. 
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Fig. 6.1. Generated timetable in  web-based graphical user interface. 

Search Algorithm 
The quality of a solution is expressed as a weighted sum combining soft time 

and classroom preferences, satisfied soft group constraints and the total number of 
student conflicts. This allows us to express the importance of different types of soft 
constraints. The following weights are considered in the sum:  

• Wstudent … weight of a student conflict, 
• Wtime … weight of a time preference of a placement, 
• Wroom … weight of a classroom preference of a placement, 
• Wconstr … weight of a preference of a satisfied soft group constraint, 

Note that preferences of all time, classroom and group soft constraints go from -
2 (strongly preferred) to 2 (strongly discouraged). So, for instance, the value of the 
weighted sum is increased when there is a discouraged time or room selected or a 
discouraged group constraint satisfied. Therefore, if there are two solutions, the better 
solution of them has the lower weighted sum of the above criteria. Moreover, additional 
solution parameters can be included in this comparison as well. For instance, we can 
also discourage empty half-hour time segments between classes (such half-hours cannot 
be used since all events require at least one hour) or usage of classrooms that are too 
large (having more than 50% excess seats). 

The termination condition stops the search when the solution is complete and 
good enough (expressed by the solution quality described above and, in case of minimal 
perturbation problem also by the number of allowed perturbations). It also allows for 
the solver to be stopped by the user. Characteristics of the current and the best achieved 
solution, describing the number of assigned variables, time and classroom preferences, 
the total number of student conflicts, etc., are visible to the user during the search.  
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The solution comparator prefers a more complete solution (with a smaller 
number of unassigned variables). In case of minimal perturbation problem, a solution 
with a smaller number of perturbations among solutions with the same number of 
unassigned variables is preferred. If both solutions have the same number of unassigned 
variables (and perturbations), the solution of better quality is selected.  

If there are one or more variables unassigned, the variable selection criterion 
picks one of them randomly. We have tried several approaches using domain sizes, 
number of previous assignments, numbers of constraints in which the variable 
participates, etc., but there was no significant improvement in this timetabling problem 
towards the random selection of an unassigned variable. The reason is, that it is easy to 
go back when a wrong variable is picked - such a variable is unassigned when there is 
a conflict with it in some of the subsequent iterations.  

When all variables are assigned, an evaluation is made for each variable 
according to the above described weights. The variable with the worst evaluation is 
selected. This variable promises the best improvement in optimisation. 

We have implemented a hierarchical handling of the value selection criteria. 
There are three levels of comparison. At each level a weighted sum of the criteria 
described below is computed.  Only solutions with the smallest sum are considered in 
the next level. The weights express how quickly a complete solution should be found.  
Only hard constraints are satisfied in the first level sum. Distance from the initial 
solution (MPP), and a weighting of major preferences (including time, classroom 
requirements and student conflicts), are considered in the next level. In the third level, 
other minor criteria are considered. In general, a criterion can be used in more than one 
level, e.g., with different weights. 

The above sums order the values lexicographically: the best value having the 
smallest first level sum, the smallest second level sum among values with the smallest 
first level sum, and the smallest third level sum among these values. As mentioned 
above, this allows diversification between the importance of individual criteria. In 
general, there can be more than three levels of these weighted sums, however three of 
them seem to be sufficient for spreading weights of various criteria for our problem. 

The value selection heuristics also allow for random selection of a value with a 
given probability Prw (random walk, e.g., 2%) and, in the case of MPP, to select the 
initial value (if it exists) with a given probability Pinit (e.g., 70%). 

Criteria used in the value selection heuristics can be divided into two sets. 
Criteria in the first set are intended to generate a complete assignment: 

• Number of hard conflicts, weighted by Vconf,1 in the first level, Vconf,2 in the 
second level and Vconf,3 in the third level. 

• Number of hard conflicts, weighted by their previous occurrences (see 
section 4.3 about conflict-based statistics) and by Vwconf,1..3. 

Additional criteria allow better results to be achieved during optimisation: 

• Number of student conflicts caused by the value if it is assigned to the 
variable, weighted by Vstudent,1..3. 

• Soft time conflicts caused by a value if it is assigned to the variable, 
weighted by Vtime,1..3. 

• Soft classroom conflicts caused by a value if it is assigned to the variable 
(combination of the placement's building, room, and classroom equipment 
compared with preferences), weighted by Vroom,1..3. 
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• Preferences of satisfied soft group constraints caused by the value if it is 
assigned to the variable, weighted by Vconstr,1..3. 

• Difference in the number of assigned initial values if the value is assigned to 
the variable (weighted by V∆init,1..3): -1 if the value is initial, 0 otherwise, 
increased by the number of initial values assigned to variables with hard 
conflicts with the value. 

Let us emphasize that the criteria from the second group are needed for 
optimisation only, i.e., they are not needed to find a feasible solution. Furthermore, 
assigning a different weight to a particular criteria influences the value of the 
corresponding objective function (e.g., see Figure 5.3 with comparison for optimisation 
criteria Vstudent,1..3 and Vtime,1..3). The solver returns good results in reasonable time (e.g., 
in 30 minutes time limit) when the total sum of the weights used in additional criteria in 
the first level corresponds to one half of the weight Vwconf,1. The weights in the second 
level usually correspond to the weights used for the solution quality comparison 
(Wstudent, Wtime, Wroom, Wconstr). 

 
Below, we present two types of experiments.  The first investigates finding an 

initial solution (e.g., when all requirements are placed in the system).  This is followed 
by experiments on the minimal perturbation problem (e.g., where there is an existing 
solution plus a set of changes to be applied to it). Solving an initial problem can be seen 
as a special case of MPP where all variables are new and therefore have no initial 
values. 

If not stated otherwise, the solution quality weights Wstudent, Wtime, Wroom and 
Wconstr in the solution quality weighted sum are set to zero in the following experiments. 
First level weight for the weighted hard conflicts Vwconf,1 is set to 1, all other weights in 
the value selection criterion are set to zero. Also, there is no random value selection 
(Prw=0). This way, by default, only the hard constraints are considered during the 
search. We will show how the other weights influence the search process and the overall 
solution quality. Also, if not stated otherwise, distances between buildings are not 
considered and department balancing is not used. The results presented in the following 
chapters were computed on 1GHz Pentium 3 PC running Windows 2000, with 512 MB 
RAM and JDK 1.4.2. 

5.1. Initial Problem 
The experiments in Figure 5.2 present the behaviour of the solver wrt. various 

settings of weights for particular criteria (the student conflicts, violated time 
preferences, and violated room preferences). It is important to see that the weights for 
particular criteria can be easily adjusted. It allows to emphasize or suppress particular 
optimization criteria and it results in the corresponding change of the solution quality. 

Time refers to the amount of time required by the solver to find the presented 
solution. Satisfied enrolments gives the percentage of satisfied requirements for courses 
chosen by students. Preferred time and preferred room correspond to the satisfaction of 
time and room preferences respectively. 100% corresponds to a case when all classes 
are placed in their most preferred times or rooms, 0% means a case when the least 
preferred locations are used. Preferences of soft group constraints are not presented, 
since there are no such constraints in the Fall 2004 data set (all group constraints are 
either required or prohibited). 
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Test case No preference Students Time Room 

Assigned variables [%] 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 
Time [min] 0.16 ± 0.03 8.45 ± 4.40 18.68 ± 6.50 0.17 ± 0.01 
Satisfied enrolments [%] 98.26 ± 0.15 99.74 ± 0.02 98.20 ± 0.13 98.18 ± 0.24 
Preferred time [%] 62.54 ± 1.19 65.33 ± 1.45 98.75 ± 0.13 62.14 ± 0.94 
Preferred room [%] 63.64 ± 2.29 62.60 ± 1.66 62.82 ± 2.07 98.58 ± 0.29 

Test case 
Students + 

Time 
Students + 

Time + Rooms No CBS  

Assigned variables [%] 100.00 ± 0.00 100.00 ± 0.00 98.42 ± 0.20  
Time [min] 19.96 ± 5.34 14.79 ± 4.87 24.08 ± 4.42  
Satisfied enrolments [%] 99.61 ± 0.03 99.79 ± 0.01 99.52 ± 0.06  
Preferred time [%] 95.70 ± 0.32 95.02 ± 0.37 94.62 ± 0.43  
Preferred room [%] 62.68 ± 2.23 75.30 ± 2.30 62.82 ± 2.07  

Fig. 6.2. Solutions of the initial problem 

A complete solution was found on every run of all experiments. Average values 
together with their RMS (root-mean-square) variances of the best achieved solutions 
from 10 different runs found within 30 minute time limit are presented. 

The experiment marked No preference presents average solutions obtained 
without any preferences on the soft constraints. All solution quality weights W and 
value selection weights V are set to zero, except of the weight Vwconf,1=1 (weight of the 
weighted hard conflicts in the first level of the value selection). 

The following five experiments marked Students, Time and Rooms are 
minimizing just one of the criteria: the student conflicts, violated time preferences and 
violated room preferences. Students experiment uses the same weights as No preference 
experiment, but student weights are the following: Vstudent,1=0.5, Vstudent,2=Wstudent=1. 
Similarly, Time experiment uses weights Vtime,1=0.5, Vtime,2=Wtime=1 and Rooms 
experiment weights Vroom,1=0.5, Vroom,2=Wroom=1. 

The experiment marked Students + Time equally combines student conflicts 
with time preferences, weights are Vstudent,1=Vtime,1=0.25, Vstudent,2=Vtime,2=Wstudent= 
Wtime=1. 

The next experiment (marked Students + Time + Rooms) most closely 
corresponds to reality. Here all the soft preferences are considered. Student conflicts and 
time preferences are weighted equally, room preferences are considered much less 
important. Weights of student conflicts and time preferences are the same as in the 
previous experiment (marked Students + Time). Moreover, the weights on room 
preferences are Vroom,2=Wroom=0.2. Note that rooms are not considered in the first level 
of the value selection criteria. 

Finally, the last experiment (marked No CBS) presents average solutions 
obtained from the solver without conflict-based statistics. The weights on soft 
constraints are the same as in the previous experiment. But there is Vconf,1=1 (weight of 
a hard conflict) instead of Vwconf,1=1 (weight of a hard conflict weighted by CBS). 
Vwconf,1 is set to zero. The solver was not able to find a complete solution within the 
given 30 minute time limit, not even when 2% random walk selection was used 
Prw=0.02) to avoid cycling. Furthermore, there were at least 5 unassigned classes after 3 
hours of running time. 

On the Purdue Timetabling Problem, conflict-based statistics proved itself not 
only as a technique which can improve the solution quality, but as a technique which 
can help us to find a complete feasible solution. 

Figure 5.3 compares several experiments giving different stress on student 
conflicts and time preferences. Average values from the best solutions of 10 different 
runs found within 30 minute time limit are presented. Only student conflicts or time 
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preferences are considered in the border experiments marked students and time 
respectively. In the middle (experiment marked 1:1), student conflicts and time 
preferences are equally weighted. The experiment marked 3:1 prefers student conflicts 
three times as much as time preferences (i.e., weights of student conflicts are three times 
higher than weights of time preferences) and vice versa. For instance, the experiment 
marked 1:2 has the following weights: Vwconf,1=1, Vstudent,1=0.2, Vtime,1=0.4, 
Vstudent,2=Wstudent=1, Vtime,2=Wtime=2. 
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Fig. 6.3.  Comparison of satisfied student enrolments and time preferences: average 
quality of the solution (left), improvement of the solution in terms of 
percentage of the 1:1 solution (right). 

5.1.1. Minimal Perturbation Problem 
The following experiments were conducted on one of the complete initial 

solutions computed in the previous set of experiments (column marked Students + Time 
+ Room in Figure 5.2). Input perturbations were generated such that a given number of 
randomly selected variables were not allowed to retain the values they were assigned in 
the initial solution. Therefore, these classes can not be scheduled to the same placement 
as in the initial solution (either room or starting time must be different). Only variables 
with more than one value in their domains were used. For each number of input 
perturbations, ten different sets of input perturbations (i.e., variables with initial values 
prohibited) were generated. The following figures show the average parameter values of 
the best solutions found within 10 minutes. 

The aim of the first set of experiments is to find a suitable setting for 
Pinit (probability of selection of an initial value) and V∆init,1..3 (difference in the number of 
assigned initial values). In each experiment, we have executed 10 tests for each of 10, 
20, 30, ... 100 input perturbations respectively (100 runs in total). The average numbers 
of assigned variables together with the average numbers of additional perturbations are 
presented in Figure 5.3. One or a combination of the criteria is used in each experiment. 
The second column refers to the set of criteria described in Figure 5.4. 

Let us explain the contents of this table. For instance, the expression 0.25s=1, 
1.0s=2 in the column marked Vstudents,s means that Vstudents,1 is set to 0.25 and Vstudents,2 is 
set to 1. The first case (∆init=0) corresponds to the settings of the Students + Time + 
Room experiment. In remaining ∆init sets, we tried to decrease the importance of other 
value selection criteria in comparison with the V∆init criterion. For ∆init=1, the first level 
value selection criterion V∆init,1 is used and the other optimisation criteria which were 
placed in the first level are disabled (Vstudent,1, Vtime,1 are set to zero). And the third line 
∆init=2 corresponds to a case when the second level value selection criterion V∆init,2 is 
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used and the other optimisation criteria from the second level (Vstudent,2, Vtime,2, Vroom,2) 
are moved to the third level. 

 
Test case 

Pinit ∆init 
Assigned 

variables [%] 
Number of 

perturbations 
0.5 0 100.00 13.83 
0.6 0 99.98 13.48 
0.7 0 99.96 13.33 
0.8 0 99.95 12.94 
0 2 100.00 31.40 

0.6 2 99.99 13.26 
0 1 100.00 13.70 

0.6 1 100.00 11.90 
Fig. 6.4. Comparison of several approaches to MPP. 

∆init V∆init,i Vstudents,s Vtime,t Vroom,r 

0 - 0.25 s=1, 1.0 s=2 0.25 t=1, 1.0 t=2 0.2 r=2 

1 0.5 i=1 1.0 s=2 1.0 t=2 0.2 r=2 

2 1.0 i=2 0.25 s=1, 1.0 s=3 0.25 t=1, 1.0 t=3 0.2 r=3 

Fig. 6.5. Meaning of ∆init 

Let us discuss particular experiments from Figure 5.4.  In the first four 
experiments (marked Pinit=0.5, ..., Pinit=0.8), the minimal perturbation problem was 
solved only by changing the value selection criteria so that it selected an initial value 
with a given probability (50%, 60%, 70% and 80% respectively). Otherwise, it worked 
exactly as Students + Time + Room experiment, since all the other weights were the 
same. As the Pinit probability is rising, we can see that the average number of additional 
perturbations is descending, but the algorithm is loosing the ability to find a complete 
solution in every run (in the given 10 minute time limit).  

Similarly, we can see that using just the second level value selection criterion 
V∆init,2 is able to find a complete solution all the time, but the average number of 
additional perturbations is too high. A combination with the 60% probability of an 
initial value selection helps to improve the average number of additional perturbations, 
but again, there were some cases where a complete solution was not found. 

Using the first level value selection criteria V∆init,1 seems to be very promising. 
With this criterion, we were able to find a complete solution to all the presented 
experiments. Moreover, the experiment marked Pinit=0.6, ∆init=1 (combining V∆init,1 
with 60% initial value selection probability) gave us the best results from the above 
experiments, since the average number of additional perturbations was the lowest. The 
following results (Figures 5.6 and 5.7) were computed using the weights from this 
experiment. 

Figure 5.6 presents the average number of additional perturbations (variables 
that were not assigned to their initial value though not prohibited). Additional 
perturbations are presented wrt. the absolute number of input perturbation (i.e., up to 
about 13.4% of input perturbations is considered). The best solution found within 10 
minutes from each experiment is taken into account. The number of additional 
perturbations grows with the number of input perturbations. 
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Fig. 6.6. Absolute number of average additional perturbations (left) and average 
additional perturbations in terms of percentage of the number of input 
perturbations (right). 

The graph on Figure 5.7 (left) shows the average quality of the resulting 
solutions in the same manner as presented in Figure 5.2. Because the initial solution is 
(at least locally) optimal, and because the number of additional perturbations is the 
primary minimization criteria, it is not surprising that the quality of the solution declines 
with an increasing number of input perturbations. The weighting between time 
preferences, student conflicts, and other parameters considered in the optimisation can 
have a similar influence as seen in the initial solutions. 
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Fig. 6.7. Average solution quality (left), average time (rigt). 

Finally, the graph in Figure 5.7 (right) presents the average time needed to find 
the best solution. Note that a 10 minutes time limit for finding the best solution was set. 
The influence of this limit is seen mostly on the right portion of the chart, where the 
number of input perturbations exceeds 50. 

5.2. Summary 
We have proposed and implemented a solution to a large scale university 

timetabling problem. Our proposal includes a new iterative forward search algorithm 
that is extended by conflict-based statistics which can be generalized to other search 
algorithms. Both ideas combined together suffice to solve the problem and the role of 
additional heuristics can be minimized. Our problem solver is able to construct a 
demand-driven timetable as well as incorporate dynamic aspects. The initial solution 
generated by our solver satisfies the course requests of more than 99% of students 
together with about 95% of time requirements. The automated search was able to find 
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suitable times and classrooms for all classes.  The experiments with a MPP give us very 
promising results as well. Within 10 minutes, the solver was able to find a complete, 
high quality solution with a small number of additional perturbations. 

Moreover, the used heuristics can be tuned to maximally fulfil the user 
requirements, e.g., when there is a need of a trade-off between several objective 
functions. We have demonstrated this, for instance, in the experiment giving different 
stress on the satisfied student enrolments and time preferences for Purdue University 
timetabling problem (see figure 5.2). 

6. Conclusion 
In this thesis, we have presented an iterative forward search algorithm which is 

capable of solving various timetabling as well as general constraint satisfaction and 
optimisation problems. It is based on local search, but it works with partial feasible 
solutions, so it is capable of returning a (partial) solution any time during the search. 
This might be a very important feature, especially if the algorithm is used in an 
interactive manner. It can start from any (partial) solution and it can be used for both 
initial and minimal perturbation problem. We have also presented various extensions of 
this algorithm which can improve the quality of the returned solutions as well as 
applicability of the algorithm on various problems. 

Also, the presented algorithm works well on the real-life large scale course 
timetabling problem at Purdue University. The generated solutions were very well 
accepted on Purdue University and they are going to use this solver in practice as of 
semester Spring 2006. Moreover, we are going to extend this solver to be used not only 
for the generation of the central timetable but also for all the departmental timetabling 
problems. These problems are of different structure and also there are some other 
constraints which need to be implemented. 

 
The major contributions of this work are: We have defined a minimal 

perturbation problem. This definition is applicable on various dynamic problems where 
the task is to find a solution of a modified problem that is as near as possible to the 
solution of the original problem. Next, we have developed the iterative forward search 
algorithm which is capable as we believe of solving various constraint satisfaction and 
optimisation problems as well as minimal perturbation problems. We have also 
presented the conflict-based statistics which can be used in the framework of IFS or a 
local search algorithm and we have shown that it could dramatically improve the results 
especially when solving optimisation problems. Finally, we were able to solve Purdue 
university large lecture room timetabling problem and we are going to continue using 
the presented approaches for the departmental problems as well. Also, we have 
published four data sets (from four different semesters) of Purdue timetabling problem 
in a clear, anonymous form which can be used as an interesting timetabling benchmark. 
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