Open Apereo 2015

Higher Education ... Open Source in a New Age

Unitime

Examination Timetabling in UniTime
(including state of the project)
June 2015

Introduction

What is UniTime?

- Comprehensive academic scheduling solution
- Four components: course timetabling, examination timetabling, student scheduling and event management
- Open source, web-based, written in Java using modern technologies
- Using state-of-the-art optimization algorithms
- Distributed data entry and timetabling in multi-user environments

State of the Project

Achievements

- Graduated from the Apereo incubation (March 2015)
- Formed PMC (pmc@unitime.org)
- Project Governance Rules
- New licensing model (Apache License,Version 2)
- Code base moved to GitHub (github.com/UniTime)
- Online student scheduling at Purdue (Banner XE API)
- Reached 500 k of lines of code (including the CPSolver)
- About 6,000 visits of unitime.org and about I,000 monthly downloads
- Steady increase in interest and adoption from literally around the world
- USA, Czech Republic, Pakistan, Croatia, Poland, Turkey, Peru, Kuwait,...
... but still very little outside contributions

State of the Project

UniTime 3.5 / 4.0 (current version)

- Released in December 2014 / March 2015
- Same features, UniTime 4.0 has a new license (Apache vs. GNU GPL)
- Clustering (Hibernate L2 cache, solver RPCs, online scheduling data)
- Online Student Scheduling (replication, SIS integration, expectations, reports)
- Multi-core solver capability (CPSolver I.3, new algorithms and constraints)
- Mobile (MGWT introduced)
- Many additional improvements across all the components

See http://builds.unitime.org/UniTime4.0/Release-Notes.xml for more details.

UniTime 4.I (in development)

- Planned release late 2015 / early 2016
- New class duration model (can consider date pattern and holidays)
- Cancelled classes
- New rooms pages (ability to enter data across terms, floor plans, etc.)
- More interfaces (especially with Ellucian Banner and Degree Works)
- Interactive and MPP mode of the student scheduling solver
- Ability to automatically keep students of the same group together
- Many additional improvements across all the components

See t.co/Fq7ePP9mXa for more details.

UniTime 4.I (in development)

- Planned release late 2015 / early 2016
- New class duration model (can consider date pattern and holidays)
- Cancelled classes
- New rooms pages (ability to enter data across terms, floor plans, etc.)
- More interfaces (especially with Ellucian Banner and Degree Works)
- Interactive and MPP mode of the student scheduling solver
- Ability to automatically keep students of the same group together
- Many additional improvements across all the components

Long Term

- Constraint Solver: instructor and student group scheduling
- Ul: moving from Struts to GWT, localization, documentation, mobile
- Interfaces: IMS Course Planning \& Scheduling, Spring Integration

See t.co/Fq7ePP9mXa for more details.

Examination Timetabling

What is Examination Timetabling?

- The process of assigning examinations to time periods and locations
- A difficult optimization problem with many competing objectives
- Student conflicts, faculty requirements, space constraints

Examination Timetabling

What is Examination Timetabling?

- The process of assigning examinations to time periods and locations
- A difficult optimization problem with many competing objectives
- Student conflicts, faculty requirements, space constraints

Why is it needed?

- The traditional process of mapping lecture times to examination periods does not really work
- More choices for courses mean more potential scheduling conflicts
- Make process easier to manage, fairness and satisfaction, what-ifs

Examination Timetabling

What is Examination Timetabling?

- The process of assigning examinations to time periods and locations
- A difficult optimization problem with many competing objectives
- Student conflicts, faculty requirements, space constraints

Why is it needed?

- The traditional process of mapping lecture times to examination periods does not really work
- More choices for courses mean more potential scheduling conflicts
- Make process easier to manage, fairness and satisfaction, what-ifs

Many flavors

- Final examinations, evening examinations, mid-terms, ...
- Additional objectives

Examination Timetabling

Well known research problem

- Examination problem has been studied extensively
- NP complete (period assignment ~ graph coloring)
- Carter's data sets from 1996 (I3 "real-world" problems including Purdue)

Vertex: examination Edge: students in common Color: examination period

Examination Timetabling

Well known research problem

- Examination problem has been studied extensively
- NP complete (period assignment ~ graph coloring)
- Carter's data sets from 1996 (I3 "real-world" problems including Purdue)

At Purdue

- Large problem (~I,900 exams with I20,000 enrollments and 29 periods)
- Solved by UniTime since 2008
- Using a local-search based hybrid approach, winner of the ITC 2007*
- Nine large instances from Purdue University made publicly available
*) More details are in the paper T. Müller, ITC2007 solver description: a hybrid approach, Annals of Operations Research, November 2009, DOI I0.1007/s I0479-009-0644-y

Examination Data

Input Data

- Examinations (with students enrolled in them)
- Periods (not overlapping, can have various durations)
- Rooms (with capacities, availabilities, and period preferences)
- Individual examination requirements and preferences
- Distribution constraints (same/different room, same/different period, precedence)

from: to:	$\begin{array}{\|l\|} \hline 8: 00 a \\ 10: 00 a \end{array}$	$\left\|\begin{array}{l} 10: 30 a \\ 12: 30 p \end{array}\right\|$	$\begin{aligned} & 1: 00 p \\ & 3: 00 p \end{aligned}$	$\begin{aligned} & 3: 30 p \\ & 5: 30 p \end{aligned}$	$\left.\begin{array}{\|l} 7: 00 p \\ 9: 00 p \end{array} \right\rvert\,$
$\begin{array}{\|c} \hline \text { Mon } \\ 12 / 09 \end{array}$					
$\begin{array}{\|c\|} \hline \text { Tue } \\ 12 / 10 \end{array}$					
$\begin{aligned} & \text { Wed } \\ & 12 / 11 \end{aligned}$					
$\begin{gathered} \text { Thu } \\ 12 / 12 \end{gathered}$					
$\begin{gathered} \text { Fri } \\ 12 / 13 \end{gathered}$					
$\begin{gathered} \text { Sat } \\ 12 / 14 \end{gathered}$					

Evening Examinations

- Mondays -Thursdays
-6:30p - 7:30p or 8p - I0p
- 3 days \& early / late
- 2-3 exams for a course
- Student availability

Example Data Entry

Final Examinations

\uparrow Classes／Courses	Length	Seating Type		Max Instructor Rooms	Period Preferences	Room Preferences	Distribution Preferences	Assigned Period	Assigned Room
MGMT 20000	120	Exam	881	4				Thu 12／12 7：00p	LAMB F101
MGMT 20010 50874－T01	120	Exam	205	4	事	PHYS 114 PHYS		Mon 12／09 8：00a	WTHR 200
MGMT 20100	120	Exam	437	4	册			Thu 12／12 3：30p	STEW 183
MGMT 29000B 23766－002	120	Exam	36	4		KRAN		Fri 12／13 10：30a	KRAN G016
MGMT 30400	120	Exam	115	4				Tue 12／10 1：00p	LILY 1105
MGMT 30500 23769－001 MGMT 30500 23771－003 MGMT 30500 23772－004 MGMT 30500 23770－002	120	Exam	280	4		RAWL 1086 RAWL	Same Per	Wed 12／11 1：00p	WTHR 200 WTHR 104
MGMT 30500 23773－005	120	Exam	70	4		RAWL 1062 RAWL	Same Per	Wed 12／11 1：00p	WTHR 172
MGMT 30600	120	Exam	236	4	册			Mon 12／09 8：00a	STEW 183

Examination Problem

Hard Constraints

- No two exams in the same period and room
- Examination must fit the period and room (or rooms)
- Room must be available
- An exam cannot be placed in a period or a room that is prohibited
- Required (hard) distribution constraints must be satisfied

Examination Problem

Soft Constraints / Objectives

- Direct conflicts
- More than two exams on a day
- Back-to-backs student conflicts
- Period, room, and distribution penalties
... and a few others
- Minimize room splits (and the distance between these rooms, if an exam is split)
- Distance to original room (i.e., the room where the class took place)
- Large exams first
- Rotation (average period)

Example Data

Purdue Fall 2012 Final Examinations

- 29 periods, I 864 exams, 33279 students, II7 27 I enrollments, 347 rooms
- Hard in size, density and utilization of large rooms

Fall 20I2	All	≥ 100 seats	≥ 200 seats	≥ 400 seats	≥ 600 seats
Rooms	347	$30(16)$	$12(8)$	$7(3)$	$2(2)$
Exams	$1,864(819)$	$248(179)$	$87(69)$	$37(32)$	$22(21)$
Density	3.3%	29.6%	60%	81.2%	83.6%
(examination seating in brackets)					

- Chromatic number of at least 27
(examination seating in brackets)

Density: probability that two exams have at least one student in common

Example Results

Fall 2012	Production	Base	Color	Split
Direct Conflicts	79.7 ± 3.4	32.7 ± 3.9	0.0 ± 0.0	0.0 ± 0.0
MoreThan 2 A Day	345.2 ± 10.0	344.8 ± 26.6	650.7 ± 38.0	$71.3 \pm \mathrm{II} .6$
Back-To-Back	4107.2 ± 74.5	4792.1 ± 151.2	6342.0 ± 133.5	1802.7 ± 112.0
Period Preferences [\%]	$9 \mathrm{I} .5 \pm 0.3$	88.2 ± 0.4	85.8 ± 0.3	88.6 ± 0.4
Room Preferences [\%]	74.3 ± 0.5	72.4 ± 0.3	72.5 ± 0.4	72.3 ± 0.7
Room Splits	43.0 ± 2.3	48.5 ± 8.9	19.8 ± 9.7	46.8 ± 3.6
Unavailable Period	-	-	12.7 ± 1.3	-
Unavailable Room	-	-	10.8 ± 0.9	-
Violated Distribution	-	-	2.8 ± 0.8	-
Period Splits	-	-	-	64.10 ± 3.54

More details are in the paper T. Müller, Real-life Examination Timetabling, Journal of Scheduling, August 20I4, DOI I0.I007/sI095I-0I4-039I-z

Example Results

Fall 20I2	Production	Base	Color	Split
Direct Conflicts	79.7 ± 3.4	32.7 ± 3.9	0.0 ± 0.0	0.0 ± 0.0
More Than 2 A Day	345.2 ± 10.0	344.8 ± 26.6	650.7 ± 38.0	$7 \mathrm{I} .3 \pm \mathrm{II} .6$
Back-To-Back	4107.2 ± 74.5	$4792.1 \pm 15 \mathrm{I} .2$	6342.0 ± 133.5	$1802.7 \pm \mathrm{II} 2.0$
Period Preferences [\%]	91.5 ± 0.3	88.2 ± 0.4	85.8 ± 0.3	88.6 ± 0.4
Room Preferences [\%]	74.3 ± 0.5	72.4 ± 0.3	72.5 ± 0.4	72.3 ± 0.7
Room Splits	43.0 ± 2.3	48.5 ± 8.9	19.8 ± 9.7	46.8 ± 3.6
Unavailable Period	-	-	12.7 ± 1.3	-
Unavailable Room	-	-	10.8 ± 0.9	-
Violated Distribution	-	-	2.8 ± 0.8	-
Period Splits	-	-	-	64.10 ± 3.54

Average of 10 runs, 2 hour time limit
More details are in the paper T. Müller, Real-life Examination Timetabling, Journal of Scheduling, August 20I4, DOI I0.I007/sI095I-0I4-039I-z

Example Results

Fall 2012	Production	Base	Color	Split
Direct Conflicts	79.7 ± 3.4	32.7 ± 3.9	0.0 ± 0.0	0.0 ± 0.0
More Than 2 A Day	345.2 ± 10.0	344.8 ± 26.6	650.7 ± 38.0	$71.3 \pm \mathrm{II} .6$
Back-To-Back	4107.2 ± 74.5	4792.1 ± 151.2	6342.0 ± 133.5	1802.7 ± 112.0
Period Preferences [\%]	91.5 ± 0.3	88.2 ± 0.4	85.8 ± 0.3	88.6 ± 0.4
Room Preferences [\%]	74.3 ± 0.5	72.4 ± 0.3	72.5 ± 0.4	72.3 ± 0.7
Room Splits	43.0 ± 2.3	48.5 ± 8.9	19.8 ± 9.7	46.8 ± 3.6
Unavailable Period	-	-	12.7 ± 1.3	-
Unavailable Room	-	-	10.8 ± 0.9	-
Violated Distribution	-	-	2.8 ± 0.8	-
Period Splits	-	-	-	64.10 ± 3.54

More details are in the paper T. Müller, Real-life Examination Timetabling, Journal of Scheduling, August 20I4, DOI I0.I007/sI095I-0I4-039I-z

Example Results

Fall 20I2	Production	Base	Color	Split
Direct Conflicts	79.7 ± 3.4	32.7 ± 3.9	0.0 ± 0.0	0.0 ± 0.0
More Than 2 A Day	345.2 ± 10.0	344.8 ± 26.6	650.7 ± 38.0	$7 \mathrm{I} .3 \pm \mathrm{II} .6$
Back-To-Back	4107.2 ± 74.5	$4792.1 \pm 15 \mathrm{I} .2$	6342.0 ± 133.5	$1802.7 \pm \mathrm{II} 2.0$
Period Preferences [\%]	91.5 ± 0.3	88.2 ± 0.4	85.8 ± 0.3	88.6 ± 0.4
Room Preferences [\%]	74.3 ± 0.5	72.4 ± 0.3	72.5 ± 0.4	72.3 ± 0.7
Room Splits	43.0 ± 2.3	48.5 ± 8.9	19.8 ± 9.7	46.8 ± 3.6
Unavailable Period	-	-	12.7 ± 1.3	-
Unavailable Room	-	-	10.8 ± 0.9	-
Violated Distribution	-	-	2.8 ± 0.8	-
Period Splits	-	-	-	64.10 ± 3.54

Average of 10 runs, 2 hour time limit
More details are in the paper T. Müller, Real-life Examination Timetabling, Journal of Scheduling, August 20I4, DOI I0.I007/sI095I-0I4-039I-z

Example Results

Fall 2012	Production	Base	Color	Split
Direct Conflicts	79.7 ± 3.4	32.7 ± 3.9	0.0 ± 0.0	0.0 ± 0.0
More Than 2 A Day	345.2 ± 10.0	344.8 ± 26.6	650.7 ± 38.0	71.3 ± 11.6
Back-To-Back	4107.2 ± 74.5	$4792.1 \pm 15 \mathrm{I} .2$	6342.0 ± 133.5	1802.7 ± 112.0
Period Preferences [\%]	91.5 ± 0.3	88.2 ± 0.4	85.8 ± 0.3	88.6 ± 0.4
Room Preferences [\%]	74.3 ± 0.5	72.4 ± 0.3	72.5 ± 0.4	72.3 ± 0.7
Room Splits	43.0 ± 2.3	48.5 ± 8.9	19.8 ± 9.7	46.8 ± 3.6
Unavailable Period	-	-	12.7 ± 1.3	-
Unavailable Room	-	-	10.8 ± 0.9	-
Violated Distribution	-	-	2.8 ± 0.8	-
Period Splits	-	-	-	64.10 ± 3.54

Average of 10 runs, 2 hour time limit
More details are in the paper T. Müller, Real-life Examination Timetabling, Journal of Scheduling, August 20I4, DOI I0.I007/sI095I-0I4-039I-z

Example Results

(

Examination Timetabling in UniTime

- Can be used for large problems
- Is very general and can be used on many higher education institutions
- Is easy to extend and/or customize

For more details, please see us at the conference

- Course Timetabling in UniTime (Sunday, I pm - 4 pm)
- Meeting State Mandated Guidelines for Student Degree Progress at

Purdue (Monday, 10:15am in Maryland A)

- Case Study: Course Timetabling with UniTime at Masaryk University (Monday, 2:30pm in Maryland F)
- Showcase: UniTime (Monday, 5:30 pm - 7 pm)
- Or visit www.unitime.org

An online demo is available at https://demo.unitime.org

