The Higher Education Open-Source Conference Los Angeles, CA June 2-6

Introducing UniTime

Zuzana Müllerová, Tomáš Müller

Agenda

- Short introduction to UniTime
- Demo
- Discussion

This presentation is available at www.unitime.org/present/apereo /9-intro.pdf

Educational Timetabling

What is educational timetabling?

- The process of assigning classes (or exams) in time and space
- A difficult optimization problem with many competing objectives
- Student conflicts, faculty requirements, space constraints

Why is it needed?

- Minimize student conflicts, thus help students receive degrees on time
- Help use resources more effectively
- Makes process easier to manage (knowledge transfer and cooperation)
- Fairness and satisfaction with the timetable
- What-if scenarios
- Ability to adapt to changes
-...

Introducing UniTime

There is a gap between research and practice

- Practice: timetables are created manually
- Often reuse prior timetable as much as possible
- Research: the problem has been extensively studied
- Subject of a lot of focus over the last two decades
- Numerous useful algorithms have been developed that can be applied
- Computers are becoming fast enough to solve large problems

Here is where UniTime comes in place

- Began as a research project in 2000
- Goal of producing an automated course timetabling solution for a large university
- Became an enterprise system meeting many university timetabling needs

Timeline

UniTime at Purdue University

$凶$
 MASARYKOVA UNIVERZITA

CHARLES
UNIVERSITY

Introducing UniTime

What is UniTime?

- Comprehensive academic scheduling solution
- Four components: course timetabling, examination timetabling, student scheduling and event management
- Open source, web-based, written in Java using modern technologies
- Using state-of-the-art optimization algorithms
- Distributed data entry and timetabling in multi-user environments
- Apereo project since March 2015

Architecture

Software Installation

- One or more web servers (Apache Tomcat / UniTime.war)
- One or more remote solver servers (Java)
- JGroups Clusters
- Hibernate L2 Cache (web servers only)
- Solver Cluster (RPCs)
- Online Student Scheduling Server replications (optional)

Enables system to create timetable for entire university

- Ability to model all types of course structure and needs
- Intuitive data entry and display of classes and their requirements
- Helps to define how students can enroll into the course
- Additional relationships can be derived from the structure

Limit Date Pattern Minutes Per Week Time Pattern Time Room Distribution Instructor

MA 170 STAT 170	40	Statistic Introducto						
Lecture	40	Full Term	50	1×50		Classroom		
Laboratory	40	Full Term	150	3×50		EDUC CompPr	Same Room	
Lec 1	40	Full Term	50	1×50		ThtrSeat Classroom		G. Newman
Lab 1	20	Full Term	150	3×50		EDUC CompPr	Same Room	J. Smith
Lab 2	20	Full Term	150	3×50		EDUC CompPr	Same Room	J. Smith

Constraints

- Rooms sizes, equipment, and availability
- Faculty time, room requirements and preferences
- Structures of courses that are to be offered
- Student course demands
- Curricula, pre-registration, last-like course enrollments, etc.

Goal

- Assign class times and locations such that
- All hard constraints and other requirements are met
- Desirable objectives are satisfied as much as possible
- Minimize student conflicts
- Accommodate time and room preferences
- Allow preferred class time distributions
- Fairness, minimize travel times

Constraint-based solver

- Can be used anywhere between fully automated to manual
- State of the art
- We have published a number of research papers over the years
- Winner of the International Timetabling Competition 2007
- Easy to extend

Suggestions					
Score	Class	Date	Time	Room	Students
+15.2	POL 101 Lec 3	Full Term	Th 12:00p \rightarrow Th 7:30a	BRNG 2280	+11
+31.7	POL 101 Lec 3	Full Term	Th 12:00p \rightarrow Th 10:30a	BRNG 2280	+36 (h+3)
	HIST 342 Lec 1	Full Term	Th 10:30a \rightarrow Th 1:30p	BRNG $2280 \rightarrow$ BRNG 2290	
+36.6	POL 101 Lec 3	Full Term	TTh 12:00p \rightarrow TTh 10:30a	BRNG 2280	+36 (h+4)
	HIST 342 Lec 1	Full Term	Th 10:30a \rightarrow Th 7:30a	BRNG 2280	
+44.1	POL 101 Lec 3	Full Term	TTh 12:00p \rightarrow TTh 10:30a	BRNG 2280	+34 (h+2)
	HIST 342 Lec 1	Full Term	TTh 10:30a \rightarrow TTh 3:00p	BRNG $2280 \rightarrow$ BRNG 2290	
	OBHR 330 Lec 4	Full Term	TTh 3:00p	BRNG $2290 \rightarrow$ LWSN B155	

Multi-user environment

- Allows for distributed timetabling with sharing of resources
- Rooms, instructors, and students
- Typical use: distributed data entry + centralized timetabling
- Data are entered by schedule deputies at each academic unit
- Course timetable is produced at a central timetabling office

Course Management

Lifecycle of a Course Timetable

I. Data entry
2. Automated timetabling (solver is used to compute a timetable)
3. Timetabling adjustments (interactive changes)
4. Student scheduling, classes start
5. Additional, ad-hoc (mostly room) changes made throughout the term
6. Roll-forward of selected data into the next like term

Student Scheduling

Why is scheduling needed?

- To ensure that students will be able to get the courses they need in a multi-section environment
- Students who come early may block later students from being able to get the courses they need

STAT Lec I

BIOL Lec I
CHM Lec
CHM Lab (a)
CHMLab (b)

Students can no longer take math and chemistry combination

Class Time Periods

Goal

Enroll students to classes in a way that maximizes the ability for students to get the courses they need

- Student fills in course requests
- Including priorities, alternatives, and their availabilities
- System suggests a schedule that best meets student needs
- Students have the ability to modify their schedule

Student Scheduling

! You are not registered for any classes yet. Please click the Build Schedule button in order to complete your registration.

Student Scheduling

Option I: Batch (one time)

- All students are scheduled at one time after the timetable is produced based on student pre-registrations
- An optimization process, using the (student scheduling) solver

Option 2: Online (real-time)

- Students without pre-registrations (e.g., incoming freshmen) can enroll online
- All students can make adjustments to their schedules
- Automatically hold space in sections based on expected student demand
- Reservations, automated wait-list, processing, instructor consents, advisor roles, etc.

Option 3: Both

- Any combination of various batches and online scheduling

Examination Timetabling

What is Examination Timetabling?

- The process of assigning examinations to time periods and locations
- A difficult optimization problem with many competing objectives
- Student conflicts, faculty requirements, space constraints

Why is it needed?

- The traditional process of mapping lecture times to examination periods does not really work
- More choices for courses mean more potential scheduling conflicts
- Make process easier to manage, fairness and satisfaction, what-ifs

Many flavors

- Final examinations, evening examinations, mid-terms, ...
- Additional objectives

Examination Data

Unitime

Input Data

- Examinations (with students enrolled in them)
- Periods (not overlapping, can have various durations)
- Rooms (with capacities, availabilities, and period preferences)
- Individual examination requirements and preferences
- Distribution constraints (same/different room, same/different period, precedence)

from: to:	$\left\lvert\, \begin{aligned} & \text { 8:00a } \\ & 10: 00 a \end{aligned}\right.$	$\left\|\begin{array}{l} 10: 30 a \\ 12: 30 p \end{array}\right\|$	$\left\|\begin{array}{l} 1: 00 p \\ 3: 00 p \end{array}\right\|$	$\begin{aligned} & 3: 30 p \\ & 5: 30 p \end{aligned}$	7:00p
$\begin{array}{\|c\|} \hline \text { Mon } \\ 12 / 09 \end{array}$					
$\begin{array}{c\|} \hline \text { Tue } \\ 12 / 10 \end{array}$					
$\begin{aligned} & \text { Wed } \\ & 12 / 11 \end{aligned}$					
$\begin{gathered} \hline \text { Thu } \\ 12 / 12 \end{gathered}$					
$\begin{gathered} \text { Fri } \\ 12 / 13 \end{gathered}$					
$\begin{gathered} \text { Sat } \\ 12 / 14 \end{gathered}$					

	Required
\square	Strongly Preferred
\square	Preferred
\square	Neutral
\square	Strongly Discouraged
\square	Prohibited
\square	

Evening Examinations

- Mondays -Thursdays
-6:30p - 7:30p or 8p - 10p
- 3 days \& early / late
- 2-3 exams for a course
- Student availability

Examination Problem

Unitime

Hard Constraints

- No two exams in the same period and room
- Examination must fit the period and room (or rooms)
- Room must be available
- An exam cannot be placed in a period or a room that is prohibited
- Required (hard) distribution constraints must be satisfied

Soft Constraints / Objectives

- Student conflicts: direct, more than two on a day, back-to-backs
- Period, room, and distribution penalties
... and a few others
- Minimize room splits (and the distance between these rooms, if an exam is split)
- Distance to original room (i.e., the room where the class took place)
- Large exams first
- Rotation (average period)

Event Management

Event management

- Management of the remaining classroom space
- Fully distributed, including an (optional) approval process
- Authenticated users can request events
- Faculty can request course-related events

UNITIME

F

Instructor Scheduling

Instructors

- Attributes: skills, qualifications, seniority, certifications, etc.
- Maximal teaching load
- Availability and preferences (on time and courses)
- Other: hiring cost, back-to-back / same day / same room preferences, ...

Courses

- Teaching requests (classes that need an instructor)
- Teaching load
- Number of instructors needed
- Requirements and preferences (instructor and attributes)
- Other: same course, same lecture preferences

Goal: assign instructors to classes in a way that maximizes satisfaction while all the constraints are met

Instructor Scheduling

1. Teaching Request

Teaching Load:
Scheduling Subpart:
Classes:

Include Subparts:

Instructional Type
$\nabla \quad$ CHM 11100 Lec (1 p
∇ CHM 11100 Pso (1
∇ CHM 11100 Lab
Required
Preferred

Same Course Preference
Same Common Part:
Qualification Preferences:

Role Preferences:

Skill Preferences:
Instructor Preferences:

CHM 11100	-
Select...	-
TA	-
Select...	-
Select...	-
Select...	$\mathbf{~}$

Other Features

Customization

- Many configuration properties, custom CSS, etc.
- Localization
- User roles \& permissions
- Authentication (CAS, LDAP, Spring Security)
- Custom reports
- JavaScript / Python scripts
- Automation

Data Exchange

- XML imports and exports
- RESTful APIs (JSON)
- CSV/PDF/iCal exports

Workshop Demo Instance

- A college with about 6,000 students
- 24 departments entering the data
- Distributed data entry, centralized timetabling
- Distance learning timetabled separately
- For this workshop, the timetabling has been decentralized
- Shared resources (especially rooms)
- Student demands based on curricula
- Loosely based on the College of Education, Masaryk University
- Web: demo.unitime.org/workshop
- Accounts: user00I/pwd00I ... user05I/pwd05 I

demo.unitime.org/workshop

Unitime

User	Department	Courses	Classes	Instructors
20, 26, 48	Art	57	154	43
38, 40	Biology	33	111	41
14,49	Civics	58	95	21
17, 18, 28, 42	Czech	114	225	32
15, 30, 36	English	157	250	50
1,22	French	56	81	18
24, 33	Geography	25	43	19
8, 12, 34	German	78	133	20
27, 47	Health Ed	21	39	17
6,32	History	39	93	49
4, 45	IT	49	95	20
9, 10	Lanquage	23	89	14
23, 25, 29	Mathematics	53	104	27
41, 51	Music	59	196	17
37, 46	Pedagogy	17	76	28
2, 7, 31, 35, 43	Physics	170	416	84
5,19	Prime Ped	34	99	16
16	Psychology	40	109	14
21, 39	Physical Ed	24	64	16
11, 50	Russian	83	156	18
13	Social Ed	89	136	75
3,44	Special Ed	135	231	74

Username:

 user001Password: pwd001

Username:

 user051Password: pwd051

Introducing UniTime

- More resources at http://bit.ly/unitime43docs

For more details, please see us at the conference

- Introducing UniTime (Sunday, I:30pm - 4:30pm in Crocker)
- UniTime: State of the Project (Monday, II:I5am - 12:00pm in Watercourt A)
- UniTime at Faculty of Medicine (Monday, I:30pm - 2:15 pm in Watercourt A)
- Student Scheduling at Purdue (Tuesday, II:I5am - 12:00pm in Watercourt A)
- Event Management in UniTime (Wed, II:00am - II:45am in Watercourt A)
- Or visit www.unitime.org

