Minimal Perturbation Problem in Course Timetabling

Tomáš Müller ${ }^{1}$ \& Hana Rudová ${ }^{2}$

${ }^{1}$ Faculty of Mathematics and Physics, Charles University muller@ktiml.mff.cuni.cz
${ }^{2}$ Faculty of Informatics, Masaryk University hanka@fi.muni.cz

Motivation [1]

- Minimal Perturbation Problem
- Problem definition can vary in time
- Environment changes
- broken machines, delayed flights, ...
- New properties based on a solution found so far

Motivation [1]

- Minimal Perturbation Problem
- Problem definition can vary in time
- Environment changes
- broken machines, delayed flights, ...
- New properties based on a solution found so far
- Goal
- Adopted solution should differ as little as possible
- Solution may be already published
- New changes may necessitate other changes
- ...

Minimal Perturbation Problem

- MPP Solver
- Input
- Initial Solution
- Problem
- Output
- New Solution
- Solving given problem
- As near as possible to the initial solution
- Metrics
- Number of perturbations
- Number of differently assigned variables
- Number of classes scheduled in different time
- Number of affected teachers or students
- ...

Motivation [2]

- Timetabling Problem at Purdue University
- Central timetable for large lecture classes
- 830 classes, some of them (25%) with multiple sections
- 50 lecture rooms (with various equipment, up to 474 seats)
- 89,633 course demands from 29,808 students
- Utilization over 78\% ($\sim 94 \%$ for the four largest rooms)
- Timetables for individual departments
- Done manually for the moment
- An area for our future work

Purdue University Timetabling

- For each class

- Time requirements \& preferences
- Meeting patterns (e.g., $3 \times 50 \mathrm{~min}, 2 \times 75 \mathrm{~min}$)
- Room requirements \& preferences
- Capacity
- Required equipment
- Room / building preference
- Instructor
- Additional (group) constraints
- Between several classes (e.g. back-to-back, precedence)
- Other ...

Purdue University Timetabling

- For each class
- Student requirements
- Time requirements \& preferences

- Meeting patterns (e.g., $3 \times 50 \mathrm{~min}, 2 \times 75 \mathrm{~min}$)
- Room requirements \& preferences
- Capacity
- Required equipment
- Room / building preference
- Instructor
- Additional (group) constraints
- Between several classes (e.g. back-to-back, precedence)
- Other ...

Purdue University Timetabling

- For each class
- Student requirements
- Time requirements \& preferences
- Meeting patterns (e.g., $3 \times 50 \mathrm{~min}, 2 \times 75 \mathrm{~min}$)
- Room requirements \& preferences
- Capacity
- Required equipment
- Room / building preference
- Instructor
- Additional (group) constraints
- Between several classes (e.g. back-to-back, precedence)
- Other ...

Iterative Forward Search Algorithm

A (partial) feasible solution

Unassigned variables

Iterative Forward Search Algorithm

A (partial) feasible solution

Unassigned variables

Iterative Forward Search Algorithm

Unassigned variables

Iterative Forward Search Algorithm

Iterative Forward Search Algorithm

- Variable selection
- A weighted sum of
- Variable domain size
- Number of previous assignments
- Number of participating constraints
- ...
- All variables might be assigned
- The worst variable in the sense of soft constraint
- MPP: A variable which has assigned a different value than in the initial solution
- Not so important as value selection

Iterative Forward Search Algorithm

- Value selection
- MPP: Initial value is selected with a given probability
- MPP: Number of additional perturbations is limited
- Weighted sum of
- Number of hard conflicts
- Soft conflicts
- Moreover: Three levels of weighted sums
- Violated hard constraints
- Important soft constraints
- Other soft constraints

Iterative Forward Search Algorithm

- Termination condition
- Solution is complete and good enough
- Expressed as a number of perturbations and a weighted sum of violated soft constraints
- Timeout or user intervention
- Solution comparator: better solution has
- Less unassigned variables
- MPP: Smaller number of perturbations
- Smaller weighted sum of violated soft constraints
- Time and room preferences, soft group constraints, number of student conflicts

Conflict-based statistics

- Idea
- Memorize conflicts and discourage their potential repetition
- If $A=a$ is unassigned because of the $B=c$
- A counter $\operatorname{Stat}[A \neq a, B=c]$ is incremented

$$
A \neq a \Leftarrow\left\{\begin{array}{c}
3 \times B=a \\
4 \times B=c \\
2 \times C=a \\
120 \times D=a
\end{array}\right.
$$

Conflict-based statistics

To be used e.g. in value selection

- If a is being selected for variable A
- And there is $B=b$ in a conflict with $A=a$

$$
\Downarrow
$$

Value a is weighted by $\operatorname{Stat}[B \neq b, A=a]+1$

Conflicts are weighted by their occurrences in the past

Experiments: Initial Problem

- Fall 2004 data set
- Best solution within 30 minutes, 10 runs

Results from Fall 2001 are presented in the paper

- 1GHz Pentium III, Java 1.4.2

Test Case	With CBS	Without CBS
Assigned classes [\%]	100.0 ± 0.00	98.42 ± 0.20
Time [min]	19.01 ± 6.70	24.08 ± 4.42
Student conflicts [\%]	0.38 ± 0.03	0.49 ± 0.06
Preferred time [\%]	81.49 ± 0.97	81.93 ± 1.45
Preferred room [\%]	49.76 ± 7.88	51.10 ± 4.40

Experiments:

Minimal Perturbation Problem

Experiments:

Minimal Perturbation Problem

Experiments: Minimal Perturbation Problem

Conclusion And Future Work

- Iterative forward search algorithm with conflict-based statistics
- Good results on Purdue University Problem
- Both on initial and minimal perturbations problems
- Future work
- More results
- Timetables for individual departments
- Other (not only timetabling) problems
- Solver improvements
- Additional requirements from Purdue University

