Minimal Perturbation Problem in Course Timetabling

Tomáš Müller¹ & Hana Rudová²

- ¹ Faculty of Mathematics and Physics, Charles University muller@ktiml.mff.cuni.cz
- ² Faculty of Informatics, Masaryk University hanka@fi.muni.cz

Motivation [1]

Minimal Perturbation Problem

Problem definition can vary in time

- Environment changes
 - broken machines, delayed flights, ...
- New properties based on a solution found so far

Motivation [1]

Minimal Perturbation Problem

Problem definition can vary in time

- Environment changes
 - broken machines, delayed flights, ...
- New properties based on a solution found so far
- Goal
 - Adopted solution should differ as little as possible
 - Solution may be already published
 - New changes may necessitate other changes
 - ...

Minimal Perturbation Problem

• MPP Solver

- Input
 - Initial Solution
 - Problem
- Output
 - New Solution
 - Solving given problem
 - As near as possible to the initial solution
- Metrics
 - Number of perturbations
 - Number of differently assigned variables
 - Number of classes scheduled in different time
 - Number of affected teachers or students
 - • •

Motivation [2]

Timetabling Problem at Purdue University

- Central timetable for large lecture classes
 - 830 classes, some of them (25%) with multiple sections

Fall 2004

- 50 lecture rooms (with various equipment, up to 474 seats)
- 89,633 course demands from 29,808 students
- Utilization over 78% (~ 94% for the four largest rooms)
- Timetables for individual departments
 - Done manually for the moment
 - An area for our future work

Purdue University Timetabling

Each student states which courses he or

she wants to attend

(soft constraint)

For each class

- Student requirements
- Time requirements & preferences
 - Meeting patterns (e.g., 3 x 50 min, 2 x 75 min)
- Room requirements & preferences
 - Capacity
 - Required equipment
 - Room / building preference
- Instructor
- Additional (group) constraints
 - Between several classes (e.g. back-to-back, precedence)
- Other ...

Purdue University Timetabling

For each class

- Student requirements
- Time requirements & preferences
 - Meeting patterns (e.g., 3 x 50 min, 2 x 75 min)
- Room requirements & preferences
 - Capacity
 - Required equipment
 - Room / building preference
- Instructor
- Additional (group) constraints
 - Between several classes (e.g. back-to-back, precedence)
- Other ...

Purdue University Timetabling

Required

Preferred

Neutral

Discouraged

Prohibited

Strongly Preferred

Strongly Discouraged

For each class

- Student requirements
- Time requirements & preferences
 - Meeting patterns (e.g., 3 x 50 min, 2 x 75 min)

- Capacity
- Required equipment
- Room / building preference
- Instructor
- Additional (group) constraints
 - Between several classes (e.g. back-to-back, precedence)
- Other ...

A (partial) feasible solution

Unassigned variables

Variable selection

- A weighted sum of
 - Variable domain size
 - Number of previous assignments
 - Number of participating constraints
 - ...
- All variables might be assigned
 - The worst variable in the sense of soft constraint
 - MPP: A variable which has assigned a different value than in the initial solution
- Not so important as value selection

Value selection

- MPP: Initial value is selected with a given probability
- MPP: Number of additional perturbations is limited
- Weighted sum of
 - Number of hard conflicts
 - Soft conflicts
- Moreover: Three levels of weighted sums
 - Violated hard constraints
 - Important soft constraints
 - Other soft constraints

Termination condition

- Solution is complete and good enough
 - Expressed as a number of perturbations and a weighted sum of violated soft constraints
- Timeout or user intervention

Solution comparator: better solution has

- Less unassigned variables
- MPP: Smaller number of perturbations
- Smaller weighted sum of violated soft constraints
 - Time and room preferences, soft group constraints, number of student conflicts

Conflict-based statistics

Idea

Memorize conflicts and discourage their potential repetition

• If A = a is unassigned because of the B = c

• A counter Stat[$A \neq a, B = c$] is incremented

$$A \neq a \Leftarrow \begin{cases} 3 \times B = a \\ 4 \times B = C \\ 2 \times C = a \\ 120 \times D = a \end{cases}$$

Conflict-based statistics

To be used e.g. in value selection

- If *a* is being selected for variable *A*
- And there is B=b in a conflict with A=a

Value *a* is weighted by Stat[$B \neq b, A = a$]+1

Conflicts are weighted by their occurrences in the past

Experiments: Initial Problem

- Fall 2004 data set
- Best solution within 30 minutes, 10 runs
- 1GHz Pentium III, Java 1.4.2

Results from Fall 2001 are presented in the paper

Test Case	With CBS	Without CBS	
Assigned classes [%]	100.0 ± 0.00	98.42 ± 0.20	
Time [min]	19.01 ± 6.70	24.08 ± 4.42	
Student conflicts [%]	$\textbf{0.38} \pm 0.03$	$\textbf{0.49} \pm 0.06$	Still at least 5
Preferred time [%]	$\textbf{81.49} \pm 0.97$	81.93 ± 1.45	unassigned classes after 3
Preferred room [%]	49.76 ± 7.88	51.10 ± 4.40	hours

Experiments: Minimal Perturbation Problem

Experiments: Minimal Perturbation Problem

Experiments: Minimal Perturbation Problem

Large Lecture Room Timetabling v1.0 - Microsoft Internet Explorer - 8 × Soubor Úpravy Zobrazit Oblíbené Nástroje Nápověda Adresa 🙆 https://www.smas.purdue.edu/Tmtbl2004fal/index.jsp -Přejít -1 Timetable Purdue Timetable EE 7:30a 8:30a 12:30a 9:30a 10:30a 11:30a 1:30p 2:30p 3:30p Input Configuration 270 Buildings AUSL227 1001 CSR331 1001 MSE230 2001 **PHPR2021** Mon MSE230 1001 ECET209 1001 HIST104 4001 ECE321 1001 0,1,0 2 0.2.0 Rooms 2 Instructors CPT385 1001 C E203 1001 PSY235 2001 ECE311 2001 ECE311 1001 Tue HIST151 2001 0.1.0 0, 0, 0 0.2.0 0, 1, 0 Classes Constraints Wed ECET214 1001 ECET2091001 AUSL2271001 CSR3311001 MSE230 2001 HIST104 4001 ECE321 1001 PHPR2021 MSE230 1001 0.1.0 2 0.2.0 2 Timetable CPT385 1001 C E203 1001 ECE311 2001 ECE311 1001 - Solver Thu PSY235 2001 HIST151 2001 0.1.0 0.0.0 0.2.0 0.1.0 Bundled LS Solver Fri | ECET214 1001 ECET209 1001 AUSL227 1001 CSR331 1001 HIST104 4001 ECE321 1001 PHPR2021 Alone LS Solver 0.1.0 2 2 0.2.0 Conf. Statistics EE 7:30a 8:30a 9:30a 10:30a 11:30a 12:30a 1:30p 2:30p 3:30p Administration 170 Users NUCL 273 1801 NUCL 208 1081 LE230 1001 C S352 1001 ECE270 1001 PSY200 2001 NUC Mon HTM181 1001 MA151 3001 Versions Export Input Cfg EDPS2351001 PHIL206 1001 EAS221 1001 HIST103 4001 F&N202 1001 ECE694A 1001 Tue Timings 22 5 1 0,0,0 🖸 Debug PSY200 2001 Wed NUCL273 1001 NUCL200 1001 HTM181 1001 LE230 1001 C S352 1001 MA151 3001 ECE270 1001 ECET1961(Data Configuration EDPS235 1001 PHIL206 1001 EAS221 1001 HIST103 4001 F&N202 1001 ECE694A1001 Thu 22 5 1 0,0,0 11 PSY200 2001 NUCL273 1001 NUCL200 1001 LE230 1001 C S352 1001 ECE270 1001 ECET1961(Fri HTM181 1001 MA151 3001 **FE** 7:30a 8:30a 9:30a 10:30a 11:30a 12:30a 1:30p2:30p 3:30p 129 CSR342 1001 PSY120 4001 PHIL330 1001 AGRY320 1001 Mon MA161 1001 ENGR100/1001 MA161 2001 MA162 1001 MA162 200 10 4 0 0,0,0 522 0.1.0 2 AGEC217 3001 ENGR100 2001 HIST152 2001 ECON251 3001 PSY120 1001 PSY120 5001 Tue 0,0,0 0,0,0 1 2 3.1.1 1 Login: muller

PSY120 4001

1.0074.50.0004

MA161 2001

MA162 1001

ENGR100 3001

PHIL330 1001 AGRY320 1001

🙆 Internet

8

5.2.2

MA162 200

DOVIDO FOOT

0.1.0

Name: Tomas Muller Data: FALL 2004 v53 r/o Server: v1.0 alpha build149 Fri, 11 Jun 2004

Wed

and a

1

CSR342 1001

10.4 0

MA161 1001

e

Conclusion And Future Work

Iterative forward search algorithm with conflict-based statistics

- Good results on Purdue University Problem
 - Both on initial and minimal perturbations problems

Future work

- More results
 - Timetables for individual departments
 - Other (not only timetabling) problems
- Solver improvements
- Additional requirements from Purdue University