PURDUE
 U N I V

Automated System for University Timetabling

Space Management \& Academic Scheduling
 Purdue University

August 30, 2006
PATAT 2006

Keith Murray
Tomáš Müller

Purdue University Timetabling

- University-wide problem size
- 9000 classes, 570 rooms
- 39000 students with 259000 class requests
- Problem Decomposition
- Central timetable for large lecture classes
- Approximately 900 classes, 54 rooms
- Utilization over 78\% (~ 97\% for four largest rooms)
- Timetables for individual departments
- 70 timetables with sizes from 10 to 750 classes
- Built on top of large lecture timetable
- Departmental schedule managers are responsible for their own solutions
- Central computer laboratory timetable

Purdue University Timetabling

- For each class

Each student states which courses he or she wants to attend (soft constraint)

- Time requirements \& preferences
- Meeting patterns (e.g., $3 \times 50 \mathrm{~min}, 2 \times 75 \mathrm{~min}$)
- Room requirements \& preferences
- Capacity
- Required equipment
- Room / building preference
- Building distances
- Instructor
- Additional (distribution) constraints
- Between several classes (e.g. back-to-back, precedence)
- Other
- Departmental balancing, efficient utilization of time and rooms, ...

Purdue University Timetabling

- For each class
- Student requirements
- Time requirements \& preferences
- Meeting patterns (e.g., $3 \times 50 \mathrm{~min}, 2 \times 75 \mathrm{~min}$)
- Room requirements \& preferences
- Capacity
- Required equipment
- Room / building preference
- Building distances
- Instructor

- Additional (distribution) constraints
- Between several classes (e.g. back-to-back, precedence)
- Other
- Departmental balancing, efficient utilization of time and rooms, ...

Purdue University Timetabling

- For each class
- Student requirements
- Time requirements \& preferences
- Meeting patterns (e.g., $3 \times 50 \mathrm{~min}, 2 \times 75 \mathrm{~min}$)
- Room requirements \& preferences
- Capacity
- Required equipment
- Room / building preference
- Building distances
- Instructor
- Additional (distribution) constraints

- Between several classes (e.g. back-to-back, precedence)
- Other
- Departmental balancing, efficient utilization of time and rooms, ...

Purdue University Timetabling

- User Interface
- Server-client application with web-based interface
- Written in Java, using J2EE, Hibernate, and Oracle Database
- Supports coordinated work on timetabling in a multi-user environment
- Solver
- Iterative Forward Search (IFS) algorithm
- A mixture of local search and backtracking
- Works in iterations
- Gradually extends (partial) feasible assignment
- Applicable to various problems and scenarios
- Problem model and constraints consider complexity of all university courses

Critical Aspects of Application

- Interaction between problems
- Only committed solutions are visible and considered by other problems
- Consistency is ensured between committed solutions
- Room sharing
- At any time, a room is either unavailable, available for use on a first come (commit) first served bases, or allocated to a particular department
- Mutual constraints (e.g., student enrollments) are considered only between the current problem and solutions to committed problems
- If there are many relations between two (or more) departments
- E.g., many students are taking classes from both departments
- These departments can be solved together
- A timetable containing all classes of these departments is created
- Or agree on a solution order
- E.g., the more difficult problem can be solved and committed, the second timetable is built on top of the first.

Critical Aspects of Application

- Data Management (instructional offering structure)
- Classes are organized in a visual representation of the course structure
- GUI allows intuitive entry and display of class and constraint data
- Preferences and requirements can be set at multiple levels
- Some constraints are automatically deduced from the structure
----Preferences----
Demand Mins Per Week Limit Time Pattern Time Room Distribution Instructor

MA 170 STAT 170	62		40						
Lecture		50	40	1×50		Classroom			
Laboratory		150	40	3×50	ロாை\|\%	ENAD Dell 2.8 machines	BTB		
Lec 1		50	40	1×50		Classroom		S. Bell	
Lab 1		150	20	3×50	\|ா10		ENAD Dell 2.8 machines	BTB	J. Beckley
Lab 2		150	20	3×50		ENAD Dell 2.8 machines	BTB	J. Beckley	

Critical Aspects of Application

- Competitive Behavior (fairness of the solution)
- Preferred times and rooms
- Minimization of the overall cost (objective function) typically favors those who provide the most preferences
- Normalization of time preferences
- Increasing the number of preferneces lowers individual preference weights

- Departmental balancing constraint
- Classes from a department are evenly spread across available times

Critical Aspects of Application

- Data Consistency Checking
- Ability to find a solution
- Input data often contain inconsistencies preventing a complete solution from being found
- Therefore, the first stage of the timetabling process is to verify data and identify the weaknesses
- Providing feedback to the user
- Solver must be able to provide information in an easily readable form
- Conflict-based statistics identify problem areas

```
G 6384\times MW 1:30p - 2:20p Full Term EE 129 KING, ERIC J
```

G 6384\times MW 1:30p - 2:20p Full Term EE 129 KING, ERIC J
@ 6318x Instructor KING, ERIC J
@ 6318x Instructor KING, ERIC J
\square5771\times C S 110 Lec 2 \& MW 1:30p - 2:20p Full Term EE 129 KING, ERIC J
\square5771\times C S 110 Lec 2 \& MW 1:30p - 2:20p Full Term EE 129 KING, ERIC J
\square 3541\times MW 12:30p - 1:20p Full Term LILY 1105 KING, ERIC J
\square 3541\times MW 12:30p - 1:20p Full Term LILY 1105 KING, ERIC J
@ 3019x Instructor KING, ERIC J
@ 3019x Instructor KING, ERIC J
\square2931\times C S 110 Lec 2 \leftarrowMW 12:30p-1:20p Full Term LILY 1105 KING, ERIC J
\square2931\times C S 110 Lec 2 \leftarrowMW 12:30p-1:20p Full Term LILY 1105 KING, ERIC J
@3467\times MW 12:30p - 1:20p Full Term EE 129 KING, ERIC J
@3467\times MW 12:30p - 1:20p Full Term EE 129 KING, ERIC J
@ 3408x Instructor KING, ERIC J
@ 3408x Instructor KING, ERIC J
\square2932x cS 110 Lec 2 \leftarrow MW 12:30p-1:20p Full Term EE 129 KING, ERIC J
\square2932x cS 110 Lec 2 \leftarrow MW 12:30p-1:20p Full Term EE 129 KING, ERIC J
\square 2459\times MW 1:30p - 2:20p Full Term LILY 1105 KING, ERIC J
\square 2459\times MW 1:30p - 2:20p Full Term LILY 1105 KING, ERIC J
\square 1268x Room LILY 1105
\square 1268x Room LILY 1105
\square1265\times BIOL 221 Lec 1 - MWF 1:30p - 2:20p Full Term LILY 1105 SANDERS, DAVID
\square1265\times BIOL 221 Lec 1 - MWF 1:30p - 2:20p Full Term LILY 1105 SANDERS, DAVID
\square1191\times Instructor KING, ERIC J
\square1191\times Instructor KING, ERIC J
\square1191\times C S 110 Lec 2 ヶMW 1:30p - 2:20p Full Term LILY 1105 KING, ERIC J
\square1191\times C S 110 Lec 2 ヶMW 1:30p - 2:20p Full Term LILY 1105 KING, ERIC J
| 15840\times C S 110 Lec 2
| 15840\times C S 110 Lec 2

+ 2588\times BIOL 221 Lec 1

```
+ 2588\times BIOL 221 Lec 1
```


Critical Aspects of Application

- Interactive Changes (ability to alter a solution)
- Solutions can be manipulated manually or by fully automated solver
- Ability to incorporate changes into an existing solution is critical in real-life problems
- 1) Minimal Perturbation Problem
- Solution to a modified problem is as close as possible to the initial solution
- 2) Interactive Mode
- Solver is guided by the user, providing an evaluated list of choices
- Backtracking with limited depth is used

Score Class	Date	Time	Room	
0	PHIL 330 Lec 1	$08 / 21-12 / 17$	MWF 4:30p	CL50 224 \rightarrow WTHR 200
	PSY 120 Lec 4	$08 / 21-12 / 17$	MWF 4:30p	WTHR 200 \rightarrow CL50 224
+0.8	PHIL 330 Lec 1	$08 / 21-12 / 17$	MWF 4:30p	CL50 224 \rightarrow EE 129
	AGEC 217 Lec 2	$08 / 21-12 / 17$	MWF 4:30p	EE 129 \rightarrow CL50 224
+5.75	PHIL 330 Lec 1	$08 / 21-12 / 17$	MWF 4:30p	CL50 224 \rightarrow LILY 1105

Critical Aspects of Application

- Student Sectioning
- Student requests courses, system determines classes (sections)
- Student Enrollments (for timetabling)
- Pre-registration, last like data for first year students, projected changes
- Solution is created based on these data
- Work in progress
- Final Student Sectioning
- Registration of classes for students, reservations, wait lists
- Online Student Sectioning
- Precompute expected conflicts based on final sectioning
- Registration of first year students and other late registrants
- Changes in existing enrollments

Demonstration

